Pattern formation in reaction-diffusion models with nonuniform domain growth
- 576 Downloads
- 73 Citations
Abstract
Recent examples of biological pattern formation where a pattern changes qualitatively as the underlying domain grows have given rise to renewed interest in the reaction-diffusion (Turing) model for pattern formation. Several authors have now reported studies showing that with the addition of domain growth the Turing model can generate sequences of patterns consistent with experimental observations. These studies demonstrate the tendency for the symmetrical splitting or insertion of concentration peaks in response to domain growth. This process has also been suggested as a mechanism for reliable pattern selection. However, thus far authors have only considered the restricted case where growth is uniform throughout the domain.
In this paper we generalize our recent results for reaction-diffusion pattern formation on growing domains to consider the effects of spatially nonuniform growth. The purpose is twofold: firstly to demonstrate that the addition of weak spatial heterogeneity does not significantly alter pattern selection from the uniform case, but secondly that sufficiently strong nonuniformity, for example where only a restricted part of the domain is growing, can give rise to sequences of patterns not seen for the uniform case, giving a further mechanism for controlling pattern selection. A framework for modelling is presented in which domain expansion and boundary (apical) growth are unified in a consistent manner. The results have implications for all reaction-diffusion type models subject to underlying domain growth.
Keywords
Pattern Formation Pattern Selection Peak Splitting Lady Beetle Domain GrowthPreview
Unable to display preview. Download preview PDF.
References
- Auchmuty, J. F. G. and G. Nicolis (1975). Bifurcation analysis of nonlinear reaction-diffusion equations—I. Evolution equations and the steady state solutions. Bull. Math. Biol. 37, 323–365.MathSciNetCrossRefGoogle Scholar
- Benson, D. L., P. K. Maini and J. A. Sherratt (1993). Analysis of pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients. Math. Comput. Modell. 17, 29–34.MathSciNetCrossRefGoogle Scholar
- Borckmans, P., A. De Wit and G. Dewel (1992). Competition in ramped Turing structures. Physica A 188, 137–157.CrossRefGoogle Scholar
- Chaplain, M. A. J., M. Ganesh and I. G. Graham (2001). Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423.MathSciNetCrossRefGoogle Scholar
- Crampin, E. J., E. A. Gaffney and P. K. Maini (1999). Pattern formation through reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120.CrossRefGoogle Scholar
- Crampin, E. J., E. A. Gaffney and P. K. Maini (2002). Mode doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model. J. Math. Biol. 44, 107–128.MathSciNetCrossRefGoogle Scholar
- Dewel, G. and P. Borckmans (1989). Effects of slow spatial gradients on dissipative structures. Phys. Lett. A 138, 189–192.CrossRefGoogle Scholar
- Dillon, R. and H. G. Othmer (1999). A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J. Theor. Biol. 197, 295–330.CrossRefGoogle Scholar
- Dulos, E., P. Davies, B. Rudovics and P. De Kepper (1996). From quasi-2D to 3D Turing structures in ramped systems. Physica D 98, 53–66.CrossRefGoogle Scholar
- Gierer, A. and H. Meinhardt (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.CrossRefGoogle Scholar
- Harrison, L. G. and M. Kolář (1988). Coupling between reaction-diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J. Theor. Biol. 130, 493–515.Google Scholar
- Harrison, L. G., S. Wehner and D. M. Holloway (2002). Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion patterning to growth. Faraday Discuss. 120, 277–293.CrossRefGoogle Scholar
- Herschkowitz-Kaufman, M. (1975). Bifurcation anaylsis of nonlinear reaction-diffusion equations—II. Steady state solutions and comparison with numerical simulations. Bull. Math. Biol. 37, 589–636.zbMATHMathSciNetCrossRefGoogle Scholar
- Holloway, D. M. and L. G. Harrison (1999). Algal morphogenesis: modelling interspecific variation in Micrasteras with reaction-diffusion patterned catalysis of cell surface growth. Phil. Trans. R. Soc. B 354, 417–433.CrossRefGoogle Scholar
- Kondo, S. and R. Asai (1995). A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768.CrossRefGoogle Scholar
- Kulesa, P. M., G. C. Cruywagen, S. R. Lubkin, P. K. Maini, J. Sneyd, M. W. J. Ferguson and J. D. Murray (1996). On a model mechanism for the spatial pattering of teeth primordia in the alligator. J. Theor. Biol. 180, 287–296.CrossRefGoogle Scholar
- Lacalli, T. C. (1981). Dissipative structures and morphogenetic pattern in unicellular algae. Phil. Trans. R. Soc. B 294, 547–588.Google Scholar
- Liaw, S. S., C. C. Yang, R. T. Liu and J. T. Hong (2001). Turing model for the patterns of lady beetles. Phys. Rev. E 64, article no. 041909.Google Scholar
- Madzvamuse, A., R. D. K. Thomas, P. K. Maini and A. J. Wathen (2002). A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves, submitted.Google Scholar
- Maini, P. K., D. L. Benson and J. A. Sherratt (1992). Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9, 197–213.MathSciNetGoogle Scholar
- May, A., P. A. Firby and A. P. Bassom (1999). Diffusion driven instability in an inhomogeneous circular domain. Math. Comput. Modell. 29, 53–66.CrossRefGoogle Scholar
- Meinhardt, H. (1982). Models of Biological Pattern Formation, London: Academic Press.Google Scholar
- Meinhardt, H. (1995). The Algorithmic Beauty of Sea Shells, Heidelberg: Springer.Google Scholar
- Meinhardt, H., A.-J. Koch and G. Bernasconi (1998). Models of pattern formation applied to plant development, in Symmetry in Plants, R. V. Jean and D. Barabé (Eds), Singapore: World Scientific, pp. 723–758.Google Scholar
- Monod, J. (1942). Recherches sur la Croissance des Cultures Bacteriennes, Paris: Herman.Google Scholar
- Morton, K. W. and D. F. Mayers (1994). Numerical Solution of Partial Differential Equations, Cambridge: Cambridge University Press.Google Scholar
- Murray, J. D. (1993). Mathematical Biology, 2nd edn, Berlin: Springer.Google Scholar
- Oster, G. F. and J. D. Murray (1989). Pattern formation models and developmental constraints. J. Exp. Zool. 251, 186–202.CrossRefGoogle Scholar
- Painter, K. J., P. K. Maini and H. G. Othmer (1999). Stripe formation in juvenile Pomacanthus explained by a generalised Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. USA 96, 5549–5554.CrossRefGoogle Scholar
- Plaza, R., F. Sánchez-Garduño, P. Padilla, R. A. Barrio and P. K. Maini (2002). The effect of growth and curvature on pattern formation, in preparation.Google Scholar
- Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400.MathSciNetCrossRefGoogle Scholar
- Smith, H. L. and P. Waltman (1995). The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge: Cambridge University Press.Google Scholar
- Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. B 237, 37–72.Google Scholar
- Varea, C., J. L. Aragón and R. A. Barrio (1999). Turing patterns on a sphere. Phys. Rev. E 60, 4588–4592.CrossRefGoogle Scholar
- Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.Google Scholar