Advertisement

Bulletin of Mathematical Biology

, Volume 64, Issue 1, pp 65–95 | Cite as

Lipoprotein oxidation and its significance for atherosclerosis: A mathematical approach

  • C. A. CobboldEmail author
  • J. A. Sherratt
  • S. R. J. Maxwell
Article

Abstract

Atherosclerosis is a chronic disease which involves the build up of cholesterol and fatty deposits within the arterial wall. This results in the narrowing of the vessel lumen, which eventually restricts blood flow to vital organs such as the heart and lungs. These events may culminate in a heart attack or stroke, the commonest causes of death in the U.K. population. In this paper we study the early stages of atherosclerosis which include the build up of cholesterol within subendothelial cells to form what is known as a fatty streak, the earliest identifiable evidence of atherosclerosis. The deposition of cholesterol is believed to be a consequence of oxidation of circulating cholesterol-rich lipoproteins, in particular low density lipoproteins (LDLs). Via a mathematical model we investigate this process of oxidation within the context of an in vitro framework. We first recreate existing experimental results and then extend the model to investigate phenomenon not studied by current experimental protocols. We find that the model displays hysteresis which reveals some interesting insights into possible in vivo events. Mathematical analysis of this behaviour predicts that vitamin E supplementation is not as beneficial as high density lipoproteins (HDLs) and vitamin C. Furthermore, the scavenging of oxidants by HDL can provide an important first line of defence against LDL oxidation.

Keywords

High Density Lipoprotein Reverse Cholesterol Transport Fatty Streak Steady State Equation Lipoprotein Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjornheden, T., A. Babiy, G. Bondjers and O. Wiklund (1996). Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis 123, 43–56.CrossRefGoogle Scholar
  2. Bonnefont-Rousselot, D., P. Therond, J. Beaudeux, J. Peynet, A. Legrand and J. Delattre (1999). High density lipoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin. Chem. Lab. Med. 37, 939–948.CrossRefGoogle Scholar
  3. Bowry, V. W., K. K. Stanley and R. Stocker (1992). High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc. Natl. Acad. Sci. USA 89, 10316–10320.Google Scholar
  4. Bowry, V. W. and R. Stocker (1993). Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 115, 6029–6044.CrossRefGoogle Scholar
  5. Bowry, V. W. and K. U. Ingold (1999). The unexpected role of vitamin E (α-tocopherol) in the peroxidation of human low-density lipoprotein. Acc. Chem. Res. 32, 27–34.CrossRefGoogle Scholar
  6. Cox, D. A. and M. L. Cohen (1996). Effects of oxidised low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis. Pharmacol. Rev. 48, 3–19.Google Scholar
  7. Davies, M. J. and N. Woolf (1990). Atherosclerosis in Ischaemic Heart Disease. Volume 1: The Mechanisms, London: Science Press.Google Scholar
  8. Doba, T., G. W. Burton and K. U. Ingold (1985). Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835, 298–303.Google Scholar
  9. Doedel, E. J., H. B. Keller and J. P. Kernevez (1991). Numerical analysis and control of bifurcation problems: (I) bifurcation in finite dimensions. Int. J. bifurcation Chaos 1, 493–520.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Esterbauer, H., J. Gebicki, H. Puhl and G. Jurgens (1992). Review Article: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13, 341–390.CrossRefGoogle Scholar
  11. Francis, G. A. (2000). High density lipoprotein oxidation: in vivo susceptibility and potential in vivo consequences. Biochim. Biophys. Acta 1483, 217–235.Google Scholar
  12. Frei, B., L. England and B. N. Ames (1989). Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 86, 6377–6381.CrossRefGoogle Scholar
  13. Frei, B., R. Stocker and B. N. Ames (1988). Antioxidant defences and lipid peroxidation in human blood plasma. Proc. Natl. Acad. Sci. USA 85, 9748–9752.CrossRefGoogle Scholar
  14. Geigy Scientific Tables. 8th edn, Vol. 3, C. Lentner (Ed.), Basle: Ciba-geigy, pp. 115–125.Google Scholar
  15. Goldstein, J. L., Y. K. Ho, S. K. Basu and M. S. Brown (1977). Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Natl. Acad. Sci. USA 76, 333–337.CrossRefGoogle Scholar
  16. Hamilton, C. A. (1997). Low-density lipoprotein and oxidised low-density lipoprotein: their role in the development of atherosclerosis. Pharmacol. Ther. 74, 55–72.CrossRefGoogle Scholar
  17. Hazel, A. L. and T. J. Pedley (1998). Alteration of mean wall shear stress near an oscillating stagnation point. J. Biomech. Eng.-Trans. ASME 120, 227–237.Google Scholar
  18. Ingold, K. U., V. W. Bowry, R. Stocker and C. Walling (1993). Autoxidation of lipids and antioxidation by α-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognised consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc. Natl. Acad. Sci. USA 90, 45–49.CrossRefGoogle Scholar
  19. Jialal, I., G. L. Vega and S. M. Grundy (1990). Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein. Atherosclerosis 82, 185–191.CrossRefGoogle Scholar
  20. Keaney, J. F. Jr, D. I. Simon and J. E. Freedman (1999). Vitamin E and vascular homeostasis: implications for atherosclerosis. FASEB J. 13, 965–976.Google Scholar
  21. Neumann, S. J., S. A. Berceli, E. M. Sevick, A. M. Lincoff, V. S. Warty, A. M. Brant, I. M. Herman and H. S. Borovetz (1990). Experimental determination and mathematical model of the transient incorporation of cholesterol in the arterial wall. Bull. Math. Biol. 52, 711–732.CrossRefzbMATHGoogle Scholar
  22. Neuzil, J., S. R. Thomas and R. Stocker (1997). Requirement for, promotion, or inhibition by α-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic. Biol. Med. 22, 57–71.CrossRefGoogle Scholar
  23. Nielsen, L. B. (1996). Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis. Atherosclerosis 123, 1–15.CrossRefGoogle Scholar
  24. Nielsen, L. B. (1999). Atheogenecity of lipoprotein(a) and oxidised low density lipoprotein: insight from in vivo studies of arterial wall influx, degradation and efflux. Atherosclerosis 143, 229–243.CrossRefGoogle Scholar
  25. Niki, E., T. Saito, A. Kawakami and Y. Kamiya (1984). Inhibition of oxidation of methyl linoleate in solution by vitamin E. J. Biol. Chem. 259, 4177–4182.Google Scholar
  26. Nyyssonen, K., H. E. Poulsen, M. Hayn, P. Agerbo, E. Porkkalasarataho and J. Kaikkonen et al. (1997). Effect of supplementation of smoking men with plain or slow release ascorbic acid on lipoprotein oxidation. Eur. J. Clin. Nutr. 51, 154–163.CrossRefGoogle Scholar
  27. Packer, J. E., T. F. Slater and R. L. Willson (1979). Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278, 737–738.CrossRefGoogle Scholar
  28. Panda, K., R. Chattopadhyay, D. Chattopadhyay and I. B. Catterjee (2000). Vitamin C prevents cigarette smoke-induced oxidative damage in vivo. Free Rad. Biol. Med. 29, 115–124.CrossRefGoogle Scholar
  29. Parthasarathy, S., J. Barnett and L. G. Fong (1990). High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim. Biophys. Acta 1044, 275–283.Google Scholar
  30. Rimm, E. B. and M. J. Stampfer (1997). The role of antioxidants in preventive cardiology. Curr. Opin. Cardiol. 12, 188–194.Google Scholar
  31. Saidel, G. M., E. D. Morris and G. M. Chisolm (1987). Transport of macromolecules in arterial wall in vivo: a mathematical model and analytical solutions. Bull. Math. Biol. 49, 153–169.CrossRefzbMATHGoogle Scholar
  32. Schwenke, D. C. and T. E. Carew (1989). Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9, 908–918.Google Scholar
  33. Stanbro, W. D. (2000a). Modelling the interaction of peroxynitrite with low-density lipoproteins. I Plasma levels of peroxynitrite. J. Theor. Biol. 205, 457–464.CrossRefGoogle Scholar
  34. Stanbro, W. D. (2000b). Modelling the interaction of peroxynitrite with low-density lipoproteins. II Reaction/Diffusion model of peroxynitrite in low-density lipoprotein particles. J. Theor. Biol. 205, 465–471.CrossRefGoogle Scholar
  35. Stanbro, W. D. (2000c). Modelling the interaction of peroxynitrite with low-density lipoproteins. III The role of antioxidants. J. Theor. Biol. 205, 473–482.CrossRefGoogle Scholar
  36. Steinberg, D., S. Parthasarathy, T. E. Carew, J. C. Khoo and J. L. Witztum (1989). Beyond cholesterol: Modifications of low-density lipoprotein than increase its atherogenicity. New Eng. J. Med. 320, 915–924.CrossRefGoogle Scholar
  37. Stocker, R. (1999). The ambivalence of vitamin E in atherogenesis. Trends Biochem. Sci. 24, 219–223.CrossRefGoogle Scholar
  38. Tall, A. R. (1998). An overview of reverse cholesterol transport. Euro. Heart J. 19(Suppl. A), A31–A35.Google Scholar
  39. Tall, A. R. (1990). Plasma high density lipoproteins: metabolism and relationship to atherogenesis. J. Clin. Invest. 86, 379–384.CrossRefGoogle Scholar
  40. The HOPE Study Investigators. (2000). Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 154–160.CrossRefGoogle Scholar
  41. Tozer, E. C. and T. E. Carew (1997). Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ. Res. 80, 208–218.Google Scholar
  42. Upston, J. M., A. C. Terentis and R. Stocker (1999). Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J. 13, 977–994.Google Scholar
  43. Watanabe, A., N. Noguchi, M. Takahashi and E. Niki (1999). Rate constants for hydrogen atom abstraction by α-tocopherol radical from lipid, hydroperoxide and ascorbic acid. Chem. Lett. 7, 613–614.CrossRefGoogle Scholar
  44. Wen, Y., S. Killalea, P. McGettigan and J. Feely (1996). Lipid peroxidation and antioxidant vitamins C and E in hypertensive patients. Irish J. Med. Sci. 165, 210–212.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2002

Authors and Affiliations

  • C. A. Cobbold
    • 1
    Email author
  • J. A. Sherratt
    • 1
  • S. R. J. Maxwell
    • 1
    • 2
  1. 1.Centre for Theoretical Modelling in Medicine, Department of MathematicsHeriot-Watt UniversityEdinburghUK
  2. 2.Clinical PharmacologyUniversity of Edinburgh, Western General HospitalEdinburghUK

Personalised recommendations