Bulletin of Mathematical Biology

, Volume 63, Issue 6, pp 1079–1093

Model of droplet dynamics in the Argentine ant Linepithema humile (Mayr)

  • Guy Theraulaz
  • Eric Bonabeau
  • Christian Sauwens
  • Jean-Louis Deneubourg
  • Arnaud Lioni
  • François Libert
  • Luc Passera
  • Ricard Solé
Article

Abstract

The formation of droplets of ants Linepithema humile (Mayr) is observed under certain experimental conditions: a fluctuating aggregate forms at the end of a rod and a droplet containing up to 40 ants eventually falls down. When the flux of incoming ants is sufficient, this process can continue for several hours, leading to the formation and fall of tens of droplets. Previous work indicates that the time series of drop-to-drop intervals may result from a nonlinear low-dimensional dynamics, and the interdrop increments exhibit long-range anticorrelations. A model of aggregation and droplet formation, based on experimental observations, is introduced and shown to reproduce these properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, J. (1991). A mechanical treatment of the leaky faucet experiment. Phys. Lett. A 155, 148–154.CrossRefGoogle Scholar
  2. Bonabeau, E., G. Theraulaz, J. L. Deneubourg, S. Aron and S. Camazine (1997). Self-organization in social insects. TREE 12, 188–193.Google Scholar
  3. Bonabeau, E., G. Theraulaz, J. L. Deneubourg, N. Franks, O. Rafelsberger, J. L. Joly and S. Blanco (1998a). A model for the emergence of pillars, walls and royal chamber in termite nests. Phil. Trans. R. Soc. B 353, 1561–1576.CrossRefGoogle Scholar
  4. Bonabeau, E., G. Theraulaz, J.-L. Deneubourg, A. Lioni, F. Libert, C. Sauwens and L. Passera (1998b). Dripping faucet with ants. Phys. Rev. E 57, 5904–5907.CrossRefGoogle Scholar
  5. Buldyrev, S. V., A. L. Goldberger, S. Havlin, C.-K. Peng and H. E. Stanley (1994). Fractals in biology and medicine: from DNA to the heartbeat, in Fractals in Science, A. Bunde and S. Havlin (Eds), Berlin: Springer, pp. 49–87.Google Scholar
  6. Buschinger, A. and U. Maschwitz (1984). Defensive behavior and defensive mechanisms in ants, in Defensive Mechanisms in Social Insects, H. R. Hermann (Ed.), New York: Praeger Scientific, pp. 95–150.Google Scholar
  7. Camazine, S., J. L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau (2001). Self-Organization in Biological Systems, Princeton: Princeton University Press.Google Scholar
  8. Cole, B. J. (1991a). Is animal behaviour chaotic? Evidence from the activity of ants. Proc. R. Soc. B 244, 253–259.Google Scholar
  9. Cole, B. J. (1991b). Short term activity cycles in ants generation of periodicity by worker interaction. Am. Nat. 137, 244–259.CrossRefGoogle Scholar
  10. Darchen, R. (1959). Les techniques de construction chez Apis Mellifica. Ann. des Sc. Nat., Zool. 1, 111–209.Google Scholar
  11. Deneubourg, J.-L. (1977). Application de l’ordre par fluctuations á la description de certaines étapes de la construction du nid chez les termites. Ins. Soc. 24, 117–130.CrossRefGoogle Scholar
  12. Deneubourg, J.-L. and S. Goss (1989). Collective patterns and decision making. Ethol. Ecol. Evol. 1, 295–311.Google Scholar
  13. Franks, N. R. (1989). Army ants: a collective intelligence. Am. Sci. 77, 138–145.Google Scholar
  14. Franks, N. R., S. Bryant, R. Griffiths and L. Hemerik (1990). Synchronization of the behaviour within nest of the ant Leptothorax acervorum (Fabricus)-I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612.CrossRefMATHGoogle Scholar
  15. Goss, S. and J. L. Deneubourg (1988). Autocatalysis as a source of synchronised rhythmical activity in social insects. Ins. Soc. 35, 310–315.CrossRefGoogle Scholar
  16. Havlin, S., R. B. Selinger, M. Schwartz, H. E. Stanley and A. Bunde (1988). Random multiplicative processes and transport in structures with correlated spatial disorder. Phys. Rev. Lett. 61, 1438–1441.CrossRefGoogle Scholar
  17. Hölldobler, B. and E. O. Wilson (1977). Weaver ants. Sci. Am. 237, 146–154.CrossRefGoogle Scholar
  18. Hölldobler, B. and E. O. Wilson (1978). The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol 3, 19–60.CrossRefGoogle Scholar
  19. Hölldobler, B. and E. O. Wilson (1990). The Ants, Cambridge, MA: Harvard University Press.Google Scholar
  20. Martien, P., S. C. Pope, P. L. Scott and R. S. Shaw (1985). The chaotic behavior of the leaky faucet. Phys. Lett. A 110, 399–404.CrossRefGoogle Scholar
  21. Peng, C.-K., J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley and A. L. Goldberger (1993). Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346.CrossRefGoogle Scholar
  22. Penna, T. J. P., P. M. C. de Oliveira, J. C. Sartorelli, W. M. Gonçalves and R. D. Pinto (1995). Long-range anticorrelations and non-gaussian behavior of a leaky faucet. Phys. Rev. E 52, 2168–2171.CrossRefGoogle Scholar
  23. Pradhan, N. and P. K. Sadavisan (1997). Validity of dimensional complexity measures of EEG signals. Int. J. Bifurcation Chaos 7, 173–186.CrossRefMATHGoogle Scholar
  24. Sanchez-Ortiz, G. I. and A. L. Salas-Brito (1995). Strange attractors in a relaxation oscillator model for the dripping water faucet. Phys. Lett. A 203, 300–311.MathSciNetCrossRefMATHGoogle Scholar
  25. Sartorelli, J. C., W. M. Gonçalves and R. D. Pinto (1994). Crisis and intermittence in a leaky-faucet experiment. Phys. Rev. E 49, 3963–3975.CrossRefGoogle Scholar
  26. Shaw, R. S. (1984). The Dripping Faucet as a Model Chaotic System, Santa Cruz: Aerial Press.Google Scholar
  27. Schneirla, T. C. (1971). Army Ants: A Study in Social Organization, H. Topoff (Ed.), San Francisco: Freeman.Google Scholar
  28. Skaife, S. H. (1955). The Argentine Ant (Iridomyrmex humilis Mayr). Trans. R. Soc. South Afr. 34, 355–377.Google Scholar
  29. Solé, R. V., O. Miramontes and B. C. Goodwin (1993). Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357.CrossRefGoogle Scholar
  30. Takens, F. (1984). On the numerical determination of the dimension of an attractor. Lect. Notes in Math. 1125, 99–115.MathSciNetCrossRefGoogle Scholar
  31. Theiler, J. (1990). Statistical precision of dimension estimators. Phys. Rev. A 41, 3038–3051.CrossRefGoogle Scholar
  32. Theiler, J., S. Eubank, A. Longtin, B. Galdrikian and J. D. Farmer (1992). Testing for nonlinearity in time series: The method of surrogate data. Physica D 58, 77–92.CrossRefGoogle Scholar
  33. Theraulaz, G., E. Bonabeau and J. L. Deneubourg (1998). The origin of nest complexity in social insects. Complexity 3, 15–25.CrossRefGoogle Scholar
  34. Theraulaz, G., E. Bonabeau and J. L. Deneubourg (1999). The mechanisms and rules of coordinated building in social insects, in Information Processing in Social Insects, C. Detrain, J. L. Deneubourg and J. Pasteels (Eds), Basel: Birkhauser Verlag, pp. 309–330.Google Scholar

Copyright information

© Society for Mathematical Biology 2001

Authors and Affiliations

  • Guy Theraulaz
    • 1
  • Eric Bonabeau
    • 2
    • 5
  • Christian Sauwens
    • 3
  • Jean-Louis Deneubourg
    • 3
  • Arnaud Lioni
    • 1
    • 3
  • François Libert
    • 1
  • Luc Passera
    • 1
  • Ricard Solé
    • 4
  1. 1.Laboratoire d’Ethologie et Cognition Animale, CNRS-ERS 2382Université Paul SabatierToulouse CédexFrance
  2. 2.Santa Fe InstituteSanta FeUSA
  3. 3.Unit of Theoretical Behavioral Ecology, CENOLI, CP 231Université Libre de BruxellesBrusselsBelgium
  4. 4.Complex Systems Research Group, Department of PhysicsFEN-UPC, Campus Nord B4BarcelonaSpain
  5. 5.Icosyst CorpBostonUSA

Personalised recommendations