Bulletin of Mathematical Biology

, Volume 63, Issue 6, pp 1063–1078 | Cite as

Estimating the size of the olfactory repertoire

  • Liran Carmel
  • David Harel
  • Doron Lancet
Article

Abstract

The concept of shape space, which has been successfully implemented in immunology, is used here to construct a model for the discrimination power of the olfactory system. Using reasonable assumptions on the behaviour of the biological system, we are able to estimate the number of distinct olfactory receptor types. Our estimated value of around 1000 receptor types is in good agreement with experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arstila, T. P., A. Casrouge, V. Baron, J. Even, J. Kanellopoulos and P. Kourilsky (1999). A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961.CrossRefGoogle Scholar
  2. Borghans, J. A. M., A. J. Noest and R. J. De Boer (1999). How specific should immunological memory be? J. Immunol. 163, 569–575.Google Scholar
  3. Cohen, I. R. (2000). Tending Adam’s Garden, Academic Press.Google Scholar
  4. De Boer, R. J. and A. S. Perelson (1991). Size and connectivity as emergent properties of developing immune network. J. Theor. Biol. 149, 381–424.Google Scholar
  5. Detours, V., R. Mehr and A. S. Perelson (1999). A quantitative theory of affinity-driven T cell repertoire selection. J. Theor. Biol. 200, 389–403.CrossRefGoogle Scholar
  6. Janeway, C. and P. Travers (1997). Immunobiology: the Immune System in Health and Disease, 3rd edn, Current Biology Ltd., Garland.Google Scholar
  7. Keşmir, C., J. A. M. Borghans and R. J. De Boer (2000). Diversity of human αβ T cell receptors. Science 288, 1135a.CrossRefGoogle Scholar
  8. Kohonen, T. (1997). Self-organizing Maps, 2nd edn, Springer.Google Scholar
  9. Lancet, D., E. Sadovsky and E. Seidemann (1993). Probability model for molecular recognition in biological receptor repertoires: Significance to the olfactory system. Proc. Natl. Acad. Sci. 90, 3715–3719.CrossRefGoogle Scholar
  10. Mori, K. and Y. Yoshihara (1998). Molecular recognition and olfactory processing in the mammlian olfactory system. Prog. Neurobiol. 13, 479–493.Google Scholar
  11. Perelson, A. S. and G. F. Oster (1979). Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81, 645–670.MathSciNetCrossRefGoogle Scholar
  12. Perelson, A. S. and G. Weisbuch (1997). Immunology for physicist. Rev. Mod. Phys. 69, 1219–1267.CrossRefGoogle Scholar
  13. Perelson, A. S. and F. W. Wiegel (1999). Some design principles for immune system recognition. Complexity 4, 29–37.MathSciNetCrossRefGoogle Scholar
  14. Segel, L. A. and A. S. Perelson (1988). Computations in shape space: a new approach to immune network theory, in Theoretical Immunology Part Two, SFI Studies in the Sciences of Complexity, A. Perelson (Ed.), Addison-Wesley Publishing Company, pp. 321–343.Google Scholar
  15. Smith, D. J., S. Forrest, R. R. Hightower and A. S. Perelson (1997). Deriving shape space parameters from immunological data. J. Theor. Biol. 189, 141–150.CrossRefGoogle Scholar
  16. Weisbuch, G. (1990). A shape space approach to the dynamics of the immune system. J. Theor. Biol. 143, 507–522.MathSciNetGoogle Scholar
  17. Weisbuch, G. and M. Oprea (1994). Capacity of a model immune network. Bull. Math. Biol. 56, 899–921.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2001

Authors and Affiliations

  • Liran Carmel
    • 1
  • David Harel
    • 1
  • Doron Lancet
    • 2
  1. 1.Department of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations