Bulletin of Mathematical Biology

, Volume 63, Issue 6, pp 1041–1062 | Cite as

Modelling the natural history of HIV infection in individuals and its epidemiological implications

  • F. A. B. Coutinho
  • L. F. Lopez
  • M. N. Burattini
  • E. Massad
Article

Abstract

The variation of viraemia in the natural course of HIV infection is expected to have major influence on the probability of transmission and, consequently, on the epidemiology of HIV/AIDS.

In this paper we propose a model which takes into account the time evolution of HIV viraemia (measured as HIV-RNA copies per ml of blood) in an infected individual and its impact on the threshold for the establishment of an endemic level, and mainly on the relative contribution of each of the clinical phases of the infection to the total transmission of HIV per infected individual.

We consider that an infected individual passes through three phases of viraemia. The first phase, which lasts for 6–7 weeks, is characterized by very high viraemia. In the second phase, which lasts about 10 years, the viraemia is much lower, increasing again in the last phase, which lasts up to two years, and ends in full-blown AIDS.

We show that the relative contribution of each phase to the total transmission of HIV is very sensitive to the model we assume for the dependence of the transmissibility of HIV on the viral load. For instance, if we assume that transmissibility is proportional to the decimal logarithm of viraemia, then the second phase predominates always. Due to the epidemiological importance of this fact, it is clear that further improvement on virological research to better understand the dependence of HIV transmissibility on the viral concentration in biological fluids is necessary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlgreen, D. J., M. K. Corny and A. C. Stein (1990). Model-based optmization of infectivity parameters: a study of the early epidemics in San Francisco. J. Acquir. Immune Defic. Syndr. 3, 631–642.Google Scholar
  2. Anderson, R. M. and R. M. May (1991). Infectious Diseases of Humans, Oxford: Oxford Science Publications.Google Scholar
  3. Aoki-Sei, S., R. Yarchoan, S. Kageyama, D. T. Hoekzema, J. M. Pluda, K. M. Wyvill, S. Broder and H. Mitsuya (1992). Plasma HIV-1 viraemia in HIV-1 infected individuals assessed by polymerase chain reaction. AIDS Res. Hum. Retroviruses 8, 1263–1270.CrossRefGoogle Scholar
  4. Arfken, G. (1970). Mathematical Methods for Physicists, 2nd edn, New York: Academic.Google Scholar
  5. Bagasra, O., S. P. Hauptman, H. W. Lischner, M. Sachs and R. J. Pomerantz (1992). Detection of human immunodeficiency virus type 1 provirus in mononuclear cells by in situ polymerase chain reaction. N. Engl. J. Med. 326, 1385–1391.CrossRefGoogle Scholar
  6. Bagnarelli, P., S. Menzo, A. Manzin, M. Giacca, P. E. Varaldo and M. Clementi (1991). Detection of human immunodeficiency virus type 1 genomic RNA in plasma samples by reverse-transcription polymerase chain reaction. J. Med. Virol. 34, 89–95.Google Scholar
  7. Blower, S. M., H. B. Gershengorn and R. M. Grant (2000). A tale of two futures: HIV and antiretroviral therapy in San Francisco. Science 287, 650–654.CrossRefGoogle Scholar
  8. Bravo, R. et al. (1995). The quantification of human immunodeficiency virus viraemia in patients with rapid and slow progression of the disease. Med. Clin. (Barc.) 104, 530–534.Google Scholar
  9. Brookmeyer, R. and M. H. Gail (1994). AIDS Epidemiology: A Quantitative Approach, Oxford: Oxford University Press.Google Scholar
  10. Cameron, D. W., J. N. Simonsen, L. J. D’Costa, A. R. Ronald, G. M. Maitha, M. N. Gakinya, M. Cheang, J. O. Ndinya-Achola, P. Piot and R. C. Brunham (1989). Female to male transmission of human immunodeficiency virus type 1: risk factors for seroconversion in men. Lancet 2, 403–407.CrossRefGoogle Scholar
  11. Connor, R. I., H. Mohri, Y. Cao and D. D. Ho (1993). Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type-1 infected individuals. J. Virol. 67, 1772–1777.Google Scholar
  12. Coombs, R. W., A. C. Collier, J. P. Allain, B. Nikora, M. Leuther, G. F. Gjerset and L. Corey (1989). Plasma viraemia in human immunodeficiency virus infection. N. Engl. J. Med. 321, 1626–1631.CrossRefGoogle Scholar
  13. Coutinho, F. A. B., E. Massad, M. N. Burattini and R. X. Menezes (1999). A theoretical model for the evolution of virulence in sexually transmitted HIV/AIDS. Rev. Saúde Pública 33, 329–333.CrossRefGoogle Scholar
  14. Coutinho, F. A. B., E. Massad, M. N. Burattini, H. M. Yang and R. S. Azevedo-Neto (1993). Effects of vaccination programs on transmission rates of infections and related threshold conditions for control. IMA J. Math. Appl. Med. Biol. 10, 187–206.MATHGoogle Scholar
  15. Coutinho, F. A. B., E. Massad, L. F. Lopez, M. N. Burattini, C. J. Struchiner and R. S. Azevedo (1999). Modelling heterogeneitis in individual frailties in epidemic models. Math. Comput. Model. 30, 97–115.CrossRefMATHGoogle Scholar
  16. Dickover, R. E., E. M. Garratty, S. A. Herman, M. S. Sim, S. Plaeger, P. J. Boyer, M. Keller, A. Deveikis, E. R. Stiehm and Y. J. Bryson (1996). Identification of levels of maternal HIV-1 RNA associated with risk of perinatal transmission. Effect of maternal zydovudine treatment on viral load. JAMA 275, 599–605.CrossRefGoogle Scholar
  17. Easterbrook, P. J. (1994). Non-progression in HIV infection. AIDS 8, 1179–1182.Google Scholar
  18. Erb, P., S. Krauchi, D. Burgin, K. Biedermann, C. Camli, C. H. Rudin and the Swiss HIV and pregnancy colaborative study group (1994). Quantitative anti-p24 determinations can predict the risk of vertical transmission. J. Acquir. Immune Defic. Syndr. 7, 261–264.Google Scholar
  19. Garcia, P. M. et al. (1999). Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of transmission. N. Engl. J. Med. 341, 394–402.CrossRefGoogle Scholar
  20. Graziosi, C., G. Pantaleo, L. Butini, J. F. Demareste, M. S. Saag, G. M. Shaw and A. S. Faucci (1993). Kinetic of human immunodeficiency virus type 1 (HIV-1) DNA and RNA synthesis during primary HIV-1 infection. Proc. Natl Acad. Sci. USA 90, 6405–6409.CrossRefGoogle Scholar
  21. Griensven, van, G. J. P., E. M. M. de Vroome, F. de Wolf, J. Goudsmit, M. Roos and R. A. Coutinho (1990). Risk factors for progression of human immunodeficiency virus (HIV) infection among seroconverted and seropositive homosexual men. Am. J. Epidemiol. 132, 203–210.Google Scholar
  22. Griffel, D. H. (1981). Applied Functional Analysis, Chichester: Ellis Horwood.MATHGoogle Scholar
  23. Henrard, D. R., J. Phillips, S. Burchett, J. B. Jackson, P. Kataaha, F. Mmiro and C. Ndugwa (1992). Plasma viral load in symptom free women and vertical transmission of HIV. Lancet 340, 1470–1471.CrossRefGoogle Scholar
  24. Hethcote, H. W. and J. W. Van Ark (1992). Modelling HIV transmission and AIDS in the United States, Berlin: Springer-Verlag.Google Scholar
  25. Ho, D. D., T. Moudgil and M. Alan (1989). Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N. Engl. J. Med. 321, 1621–1625.CrossRefGoogle Scholar
  26. Holodniy, M., D. A. Katzenstein, S. Sengupta, A. M. Wang, C. Casipit, D. H. Schwarts, M. Konrad, E. Groves and T. C. Merigan (1991). Detection and quantification of human immunodeficiency virus RNA in patients serum by use of the polymerase chain reaction. J. Infect. Dis. 163, 862–866.Google Scholar
  27. Houn, H. Y., A. A. Pappas, and E. M. Walker Jr (1987). Status of current clinical tests for human immunodeficiency virus (HIV): applications and limitations. Ann. Clin. Lab. Sci. 17, 279–285.Google Scholar
  28. Hyman, J. M. and F. A. Stanley (1988). Using mathematical models to understand the Aids epidemics. Math. Biosci. 90, 415–473.MathSciNetCrossRefMATHGoogle Scholar
  29. Jackson, J. B. and H. H. Balfour Jr (1988). Practical diagnostic testing for human immunodeficiency virus. Clin. Microbiol. Rev. 1, 124–138.Google Scholar
  30. Jacquez, J. A., J. S. Koopman, C. P. Simon and I. M. Longini Jr (1994). Role of the primary infection in epidemics of HIV infection in gay cohorts. J. Acquir. Immune Defic. Syndr. 7, 1169–1184.Google Scholar
  31. Jurriaans, S. (1995). Virus load in HIV-1 Infection, PhD thesis, Univerrsity of Amsterdam.Google Scholar
  32. Keet, I. P. M., P. Krijnen, N. Koot, J. M. A. Lange, F. Miedema, J. Goudsmit and R. A. Coutinho (1993). Predictors of rapid progression to AIDS in HIV-1 seroconverters. AIDS 7, 51–57.Google Scholar
  33. Kievits, T., B. van Gemen, D. van Strijp, R. Schukkink, M. Dircks, H. Adriaanse, L. Malek, R. Sooknanan and P. Lens (1991). NASBA isothermal enzymatic in vitru nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J. Virol. Methods 35, 273–286.CrossRefGoogle Scholar
  34. Koopman, S. J., J. A. Jacquez, W. W. Gavin, C. P. Simon, B. Foxman, M. P. Stephen, D. Barth-Jones, L. A. Andrew and K. Lange (1997). The role of early HIV infection in the spread of HIV through populations. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 14, 249–258.Google Scholar
  35. Layne, S. P., M. J. Merges, M. Dembo, J. L. Spouge, S. R. Conley, J. P. Moor, J. L. Raina, H. Renz, H. R. Gelderblom and P. L. Nara (1992). Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 189, 695–714.CrossRefGoogle Scholar
  36. Levin, B. R., J. J. Bull and F. M. Stewart (1996). The intrinsic rate of increase of HIV/AIDS: epidemiological and evolutionary implications. Math. Biosci. 132, 69–96.CrossRefMATHGoogle Scholar
  37. Lifson, A. R., S. P. Buchbinder, H. W. Sheppard, A. C. Mawle, J. C. Wilber, N. Stanley, C. E. Hart, N. A. Hessol and S. D. Holmberg (1991). Long-term human immunodeficiency virus infection in asymptomathic homosexual and bisexual men with normal CD4+ lymphocyte counts: immunologic and virologic characteristics. J. Infect. Dis. 163, 959–965.Google Scholar
  38. Lopez, L. F. and F. A. B. Coutinho (2000). On the existence and uniqueness of a solution of an integral equation which appear in epidemiology. J. Math. Biol. 40, 199–228.MathSciNetCrossRefMATHGoogle Scholar
  39. Massad, E. (1989). A homogeneously mixing population model for the AIDS epidemic. Math. Comput. Model. 12, 89–96.MATHCrossRefGoogle Scholar
  40. May, R. M. and R. M. Anderson (1990). Parasite-host coevolution. Parasitology 100, S89–S101.CrossRefGoogle Scholar
  41. Mellors, J. W., C. R. Rinaldo Jr, P. Gupta, R. M. White, J. A. Todd and L. A. Kingsley (1996). Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170.Google Scholar
  42. Osmond, D., P. Bacchetti, R. E. Chaisson, T. Kelly, R. Stempel, J. Carlson and A. R. Moss (1988). Time of exposure and risk of HIV infection in homosexual partners of men with AIDS. Am. J. Public Health 78, 944–948.CrossRefGoogle Scholar
  43. Piatak, M. J. Jr, M. S. Saag, L. C. Yang, S. J. Clark, J. C. Kappes, K. C. Luk, P. H. Hahn, G. M. Shaw and J. D. Lifson (1993). High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1759.Google Scholar
  44. Plummer, F. A., J. N. Simonsen and D. W. Cameron et al. (1991). Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J. Infect. Dis. 163, 233.Google Scholar
  45. Quinn, T. C., M. J. Wawer, N. Sewankambo, D. Serwardda, C. J. Li, F. Wabwire-Mangen, M. O. Meehan, T. Lutalo and R. H. Gray (2000). Viral load and heterosexual transmission of human immunodeficiency virus type 1. N. Engl. J. Med. 342, 921–929.CrossRefGoogle Scholar
  46. Sano, K. and M. H. Lee (1987). Antibody that inhibits human immunodeficiency virus reverse transnriptase and association with inability to isolate virus. J. Clin. Microbiol. 25, 2415–2417.Google Scholar
  47. Simmonds, P. (1990). Variation in HIV virus load of individuals at different stages in infection: possible relationship with risk of transmission. AIDS 4(Suppl. 1), S77–S83.Google Scholar
  48. Simonsen, J. N., D. W. Cameron, M. N. Gakinya, J. O. Ndinya-Achola, L. J. D’Costa, P. Karasira, M. Cheang, A. R. Ronald, P. Piot and F. A. Plummer (1988). Human immunodeficiency virus infection among men with sexually transmitted disease. Experience from a center in Africa. N. Engl. J. Med. 319, 274–278.CrossRefGoogle Scholar
  49. Vella, S. et al. (2000). Plasma HIV-1 copy number and in vitro infectivity of plasma prior to and during combination antiretroviral treatment. Antiviral Res. 47, 189–198.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2001

Authors and Affiliations

  • F. A. B. Coutinho
    • 1
  • L. F. Lopez
    • 1
  • M. N. Burattini
    • 1
  • E. Massad
    • 1
  1. 1.School of MedicineThe University of São Paulo, and LIM01/HCFMUSP.Brazil

Personalised recommendations