Bulletin of Mathematical Biology

, Volume 63, Issue 5, pp 951–980 | Cite as

Ants and agents: A process algebra approach to modelling ant colony behaviour

  • D. J. T. SumpterEmail author
  • G. B. Blanchard
  • D. S. Broomhead


Process algebras are widely used in the analysis of distributed computer systems. They allow formal reasoning about how the various components of a system contribute to its overall behaviour. In this paper we show how process algebras can be usefully applied to understanding social insect biology, in particular to studying the relationship between algorithmic behaviour of individual insects and the dynamical behaviour of their colony. We argue that process algebras provide a useful formalism for understanding this relationship, since they combine computer simulation, Markov chain analysis and mean-field methods of analysis. Indeed, process algebras can provide a framework for relating these three methods of analysis to each other and to experiments. We illustrate our approach with a series of graded examples of modelling activity in ant colonies.


Markov Chain Colony Size Process Algebra Global Clock Discrete State Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanchard, G. B. (1996). Ants Through the Looking Glass, PhD thesis, University of Bath.Google Scholar
  2. Blanchard, G. B., A. Kidd and N. R. Franks. Computer vision ii: The automated classification of behaviour (in preparation).Google Scholar
  3. Blanchard, G. B., G. M. Orledge, S. E. Reynolds and N. R. Franks (2000). Division of labour and seasonality in the ant Leptothorax albipennis: worker corpulence and its influence on behaviour. Animal Behaviour 59, 723–738.CrossRefGoogle Scholar
  4. Boi, S., I. D. Couzin, N. Del Buono, N. R. Franks and N. F. Britton (1999). Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. B 266, 371–378.CrossRefGoogle Scholar
  5. Bonabeau, E., G. Theraulaz and J-L. Deneubourg (1998). The synchronisation of recruitment-based activities in ants. BioSystems 45, 195–211.CrossRefGoogle Scholar
  6. Bonabeau, E., G. Theraulaz, J-L. Deneubourg, S. Aron and S. Camazine (1997). Self-organization in social insects. Trends in Ecology and Evolution 12, 188–193.CrossRefGoogle Scholar
  7. Bourke, A. F. and N. R. Franks (1995). Social Evolution in Ants, Princeton, New Jersey: Princeton University Press.Google Scholar
  8. Cole, B. J. (1991a). Is animal behaviour chaotic? Evidence from the activity of ants. Proc. R. Soc. Lond. B 244, 253–259.Google Scholar
  9. Cole, B. J. (1991b). Short-term activity cycles in ants: Generation of periodicity by worker interaction. Am. Naturalist 137, 244–259.CrossRefGoogle Scholar
  10. Cole, B. J. and D. Cheshire (1996). Mobile cellular automata models of ant activity: Movement activity of Leptothorax allardycei. Am. Naturalist 148, 1–15.CrossRefGoogle Scholar
  11. Cox, M. D. and G. B. Blanchard (2000). Gaseous templates in ant nests. J. Theor. Biol. 204, 223–238.CrossRefGoogle Scholar
  12. Edelstein-Keshet, L., J. Watmough and G. B. Ermentrout (1995). Trail following in ants—individual properties determine population behaviour. Behav. Ecology Sociobiology 36, 119–133.CrossRefGoogle Scholar
  13. Franks, N. R., S. Bryant, R. Griffiths and L. Hemerick (1990). Synchronisation of the behaviour within nests of the ant Leptothorax acervorum (fabricius)—i. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612.CrossRefGoogle Scholar
  14. Franks, N. R. and A. B. Sendova-Franks (1992). Brood sorting by ants: distributing the workload over the work-surface. Behav. Ecology Sociobiology 30, 109–123.Google Scholar
  15. Gordon, D. M., R. E. H. Paul and K. Thorpe (1993). What is the function of encounter patterns in ant colonies? Animal Behaviour 45, 1083–1100.CrossRefGoogle Scholar
  16. Goss, S. and J-L. Deneubourg (1988). Auto-catalysis as a source of syncronised rhythmical activity in social insects. Insectes Sociaux 35, 310–315.CrossRefGoogle Scholar
  17. Grimmett, G. R. and D. R. Stirzaker (1992). Probability and Random Processes, Oxford University Press.Google Scholar
  18. Grimmett, G. R. and D. Welsh (1986). Probability: An Introduction, Oxford University Press.Google Scholar
  19. Hatcher, M., C. Tofts and N. R. Franks (1992). Mutual exclusion as a mechanism for information exchange within ant nests. Naturwissenschaften 79, 32–34.CrossRefGoogle Scholar
  20. Hatcher, M. J. (1992). Activity Patterns and Organization Within Ant Nests, PhD thesis, University of Bath.Google Scholar
  21. Hemerick, L., N. R. Franks and N. F. Britton (1990). Synchronization of the behaviour within nests of the ant Leptothorax acervorum (fabricius)—ii. Modelling the phenomenon and predictions from the model. Bull. Math. Biol. 52, 613–628.CrossRefGoogle Scholar
  22. Hilborn, R. C. (1994). Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press.Google Scholar
  23. Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice Hall.Google Scholar
  24. Lachmann, M. and G. Sella (1995). The computationally complete ant colony: Global coordination in a system with no hierarchy, in Proceedings of the Third European Conference on Artificial Life, Lecture Notes in Computer Science, F. Morán, A. Moreno, J. J. Merelo and P. Chacón (Eds), Springer, pp. 784–800.Google Scholar
  25. Milner, R. (1989). Communication and Concurrency, Prentice Hall.Google Scholar
  26. Murray, J. D. (1989). Mathematical Biology, Berlin: Springer-Verlag.Google Scholar
  27. Nicolis, S. C. and J-L. Deneubourg (1999). Emerging patterns and food recruitment in ants: an analytical study. J. Theor. Biol. 198, 575–592.CrossRefGoogle Scholar
  28. Pacala, S. W., D. M. Gordon and H. C. J. Godfrey (1996). Effects of social group size on information transfer and task allocation. Evolutionary Ecology 10, 127–165.CrossRefGoogle Scholar
  29. Partridge, L. W., K. A. Partridge and N. R. Franks (1997). Field survey of a monongynous Leptothoracine ant (Hymenoptera, Formicidae): evidence of seasonal polydomy? Insectes Sociaux 44, 75–83.CrossRefGoogle Scholar
  30. Seeley, T. D., S. Camazine and J. Sneyd (1991). Collective decision making in honey bees: how colonies choose among nectar sources. Behav. Ecology Sociobiology 28, 277–290.Google Scholar
  31. Sendova-Franks, A. B. and N. R. Franks (1993). Division of labour in ants nests within highly variable environments (a study of temporal polyethism: Experimental.). Bull. Math. Biol. 55, 75–96.CrossRefGoogle Scholar
  32. Sole, R. V., O. Mirarmontes and B. C. Goodwin (1993). Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357.CrossRefGoogle Scholar
  33. Sumpter, D. J. T. (2000). From Insect to Society: An Agent-Based Investigation of Honey Bee Colonies, PhD thesis, University of Manchester Institute of Science and Technology.Google Scholar
  34. Sumpter, D. J. T. and D. S. Broomhead (2000). Shape and dynamics of thermoregulating honey bee clusters. J. Theor. Biol. 204, 1–14.CrossRefGoogle Scholar
  35. Sumpter, D. J. T. and D. S. Broomhead (2001). Relating individual behaviour to population dynamics. Proc. R. Soc. Lond. B 1534, 95–110.Google Scholar
  36. Tofts, C. (December 1991). Describing social insect behaviour using process algebra. Trans. Soc. Comput. Simulation, 227–283.Google Scholar
  37. Tofts, C. (1993). Algorithms for task allocation in ants (a study of temporal polyethism: Theory). Bull. Math. Biol. 55, 75–96.CrossRefGoogle Scholar
  38. Tofts, C. (1994). Processes with probabilities, priority and time. Formal Aspects of Computing 6, 536–564.zbMATHCrossRefGoogle Scholar
  39. Tofts, C., M. Hatcher and N. R. Franks (1992). The autosynchonisation of the ant Leptothorax acervorum (fabricius): Theory, testability and experiment. J. Theor. Biol. 157, 71–82.Google Scholar

Copyright information

© Society for Mathematical Biology 2001

Authors and Affiliations

  • D. J. T. Sumpter
    • 1
    • 2
    Email author
  • G. B. Blanchard
    • 3
  • D. S. Broomhead
    • 2
  1. 1.Centre for Mathematical Biology, Mathematical InstituteOxfordUK
  2. 2.Department of MathematicsUMISTManchesterUK
  3. 3.LondonUK

Personalised recommendations