Bulletin of Mathematical Biology

, Volume 63, Issue 1, pp 57–94

Replication and mutation on neutral networks

  • Christian Reidys
  • Christian V. Forst
  • Peter Schuster


Folding of RNA sequences into secondary structures is viewed as a map that assigns a uniquely defined base pairing pattern to every sequence. The mapping is non-invertible since many sequences fold into the same minimum free energy (secondary) structure or shape. The pre-images of this map, called neutral networks, are uniquely associated with the shapes and vice versa. Random graph theory is used to construct networks in sequence space which are suitable models for neutral networks.

The theory of molecular quasispecies has been applied to replication and mutation on single-peak fitness landscapes. This concept is extended by considering evolution on degenerate multi-peak landscapes which originate from neutral networks by assuming that one particular shape is fitter than all the others. On such a single-shape landscape the superior fitness value is assigned to all sequences belonging to the master shape. All other shapes are lumped together and their fitness values are averaged in a way that is reminiscent of mean field theory. Replication and mutation on neutral networks are modeled by phenomenological rate equations as well as by a stochastic birth-and-death model. In analogy to the error threshold in sequence space the phenotypic error threshold separates two scenarios: (i) a stationary (fittest) master shape surrounded by closely related shapes and (ii) populations drifting through shape space by a diffusion-like process. The error classes of the quasispecies model are replaced by distance classes between the master shape and the other structures.

Analytical results are derived for single-shape landscapes, in particular, simple expressions are obtained for the mean fraction of master shapes in a population and for phenotypic error thresholds. The analytical results are complemented by data obtained from computer simulation of the underlying stochastic processes. The predictions of the phenomenological approach on the single-shape landscape are very well reproduced by replication and mutation kinetics of tRNAphe. Simulation of the stochastic process at a resolution of individual distance classes yields data which are in excellent agreement with the results derived from the birth-and-death model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F. J. (1997). Vagaries of the molecular clock. Proc. Natl. Acad. Sci. USA 94, 7776–7783.CrossRefGoogle Scholar
  2. Babajide, A., I. L. Hofacker, M. J. Sippl and P. F. Stadler (1997). Neutral networks in protein space: A computational study based on knowledge-based potentials of mean force. Folding Des. 2, 261–269.CrossRefGoogle Scholar
  3. Batey, R. T., R. P. Rambo and J. A. Doudna (1999). Tertiary motifs in structure and folding of RNA. Angew. Chem. Int. Ed. 38, 2326–2343.CrossRefGoogle Scholar
  4. Biebricher, C. K. and W. C. Gardiner (1997). Molecular evolution of RNA in vitro. Biophys. Chem. 66, 179–192.CrossRefGoogle Scholar
  5. Domingo, E. and J. J. Holland (1997). RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178.CrossRefGoogle Scholar
  6. Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523.CrossRefGoogle Scholar
  7. Eigen, M. (1993). The origin of genetic information. Viruses as models. Gene 135, 37–47.CrossRefGoogle Scholar
  8. Eigen, M., J. McCaskill and P. Schuster (1989). The molecular quasispecies. Adv. Chem. Phys. 75, 149–263.Google Scholar
  9. Eigen, M. and P. Schuster (1977). The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565.CrossRefGoogle Scholar
  10. Elena, S. F., V. S. Cooper and R. E. Lenski (1996). Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804.Google Scholar
  11. Fontana, W., D. A. M. Konings, P. F. Stadler and P. Schuster (1993). Statistics of RNA secondary structures. Biopolymers 33, 1389–1404.CrossRefGoogle Scholar
  12. Fontana, W. and P. Schuster (1987). A computer model of evolutionary optimization. Biophys. Chem. 26, 123–147.CrossRefGoogle Scholar
  13. Fontana, W. and P. Schuster (1998a). Continuity in evolution. On the nature of transitions. Science 280, 1451–1455.CrossRefGoogle Scholar
  14. Fontana, W. and P. Schuster (1998b). Shaping space: The possible and the attainable in RNA genotype—phenotype mapping. J. Theor. Biol 194, 491–515.CrossRefGoogle Scholar
  15. Fontana, W., W. Schnabl and P. Schuster (1989). Physical aspects of evolutionary optimization and adaptation. Phys. Rev. A 40, 3301–3321.CrossRefGoogle Scholar
  16. Forst, C. V., C. Reidys and J. Weber (1995). Evolutionary dynamics and optimization: Neutral networks as model-landscapes for RNA secondary-structure folding-landscapes, Advances in Artificial Life, Lecture Notes in Artificial Intelligence 929, F. Morán, A. Moreno, J. J. Merelo and P. Chacón (Eds), Berlin: Springer-Verlag, pp. 128–147.Google Scholar
  17. Gardiner, C. W. (1985). Handbook of Stochastic Methods, 2nd edn, Berlin: Springer-Verlag.Google Scholar
  18. Gavrilets, S. (1997). Evolution and speciation on holey landscapes. Trends Ecol. Evol. 12, 307–312.CrossRefGoogle Scholar
  19. Gavrilets, S. and J. Gravner (1997). Percolation on the fitness hypercube and the evolution of reproductive isolation. J. Theor. Biol. 184, 51–64.CrossRefGoogle Scholar
  20. Gavrilets, S., H. Li and M. D. Voss (1998). Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. London B 265, 1483–1489.CrossRefGoogle Scholar
  21. (1993). The RNA World, R. F. Gesteland and J. F. Atkins (Eds), Plainview, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  22. Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.MathSciNetCrossRefGoogle Scholar
  23. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.CrossRefGoogle Scholar
  24. Göbel, U., C. V. Forst and P. Schuster (1997). Structural constraints and neutrality in RNA, Proceedings of the German Conference on Bioinformatics 1996, Lecture Notes in Computer Science 1278, R. Hofestädt, T. Lengauer, M. Löffler and D. Schomburg (Eds), Berlin: Springer-Verlag, pp. 156–165.Google Scholar
  25. Goel, N. S. and N. Richter-Dyn (1974). Stochastic Models in Biology, New York: Academic Press.Google Scholar
  26. Govindarajan, S. and R. A. Goldstein (1996). Why are some protein structures so common. Proc. Natl. Acad. Sci. USA 93, 3341–3345.CrossRefGoogle Scholar
  27. Govindarajan, S. and R. A. Goldstein (1997). The foldability landscape of model proteins. Biopolymers 42, 427–438.CrossRefGoogle Scholar
  28. Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster (1996a). Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks. Mh. Chem. 127, 355–374.Google Scholar
  29. Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster (1996b). Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structure of neutral networks and shape space covering. Mh. Chem. 127, 375–389.Google Scholar
  30. Higgs, P. G. (1998). Compensatory neutral mutations and the evolution of RNA. Genetica 102/103, 91–101.CrossRefGoogle Scholar
  31. Hofacker, I. L., W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker and P. Schuster (1994). Fast folding and comparison of RNA secondary structures. Mh. Chem. 125, 167–188.Google Scholar
  32. Hofacker, I. L., P. Schuster and P. F. Stadler (1998). Combinatorics of RNA secondary structures. Discrete Appl. Math. 89, 177–207.MathSciNetGoogle Scholar
  33. Huynen, M. A., P. F. Stadler and W. Fontana (1996). Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401.CrossRefGoogle Scholar
  34. Jones, B. L., R. H. Enns and S. S. Rangnekar (1975). On the theory of selection of coupled macromolecular systems. Bull. Math. Biol. 38, 12–28.Google Scholar
  35. Karlin, S. and H. M. Taylor (1975). A First Course in Stochastic Processes, New York: Academic Press.MATHGoogle Scholar
  36. Karlin, S. and H. M. Taylor (1981). A Second Course in Stochastic Processes, New York: Academic Press.MATHGoogle Scholar
  37. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217, 624–626.Google Scholar
  38. Kimura, M. (1983). The Neutral Theory of Molecular Evolution, Cambridge, UK: Cambridge University Press.Google Scholar
  39. King, J. L. and T. H. Jukes (1969). Non-Darwinian evolution: Random fixation of selectively neutral variants. Science 164, 788–798.Google Scholar
  40. McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478.MATHMathSciNetCrossRefGoogle Scholar
  41. Moran, P. A. P. (1962). The Statistical Processes of Evolutionary Theory, Oxford, UK: Clarendon Press.MATHGoogle Scholar
  42. Nowak, M. and P. Schuster (1989). Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395.Google Scholar
  43. Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286.CrossRefGoogle Scholar
  44. Papadopoulos, D., D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski and M. Blot (1999). Genomic evolution during a 10 000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA 96, 3807–3812.CrossRefGoogle Scholar
  45. Reidys, C. M. (1997). Random induced subgraphs of generalized n-cubes. Adv. Appl. Math. 19, 360–377.MATHMathSciNetCrossRefGoogle Scholar
  46. Reidys, C., P. F. Stadler and P. Schuster (1997). Generic properties of combinatory maps—Neutral networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397.CrossRefMATHGoogle Scholar
  47. Schultes, E. A. and D. P. Bartel (2000). One sequence, two ribozymes: Implications for the emergence of new ribozyme folds. Science 289, 448–452.CrossRefGoogle Scholar
  48. Schuster, P. (1997a). Genotypes with phenotypes. adventures in an RNA toy world. Biophys. Chem. 66, 75–110.CrossRefGoogle Scholar
  49. Schuster, P. (1997b). Landscapes and molecular evolution. Physica D 107, 351–365.MathSciNetCrossRefGoogle Scholar
  50. Schuster, P. (1997c). The role of neutral mutations in the evolution of RNA molecules, in Theoretical and Computational Methods in Genome Research, S. Suhai (Ed.), New York: Plenum Press, pp. 287–302.Google Scholar
  51. Schuster, P. (2000). Molecular insights into evolution of phenotypes, in Evolutionary Dynamics—Exploring the Interplay of Accident, Selection, Neutrality, and Function, J. P. Crutchfield and P. Schuster (Eds), New York: Oxford University Press.Google Scholar
  52. Schuster, P. and W. Fontana (1999). Chance and necessity in evolution: Lessons from RNA. Physica D 133, 427–452.MathSciNetCrossRefGoogle Scholar
  53. Schuster, P., W. Fontana, P. F. Stadler and I. L. Hofacker (1994a). From sequences to shapes and back: A case study in RNA secondary structures. Proc. R. Soc.(London) B 255, 279–284.Google Scholar
  54. Schuster, P., W. Fontana, P. F. Stadler and I. L. Hofacker (1994b). From sequences to shapes and back: A case study in RNA secondary structures. Proc. R. Soc. Lond. B 255, 279–284.Google Scholar
  55. Schuster, P. and P. F. Stadler (2000). Discrete models of biopolymers, in Handbook of Computational Chemistry, M. J. C. Crabbe, M. Drew and A. Konopka (Eds), New York: Marcel Dekker, (pages in press).Google Scholar
  56. Schuster, P., P. F. Stadler and A. Renner (1997). RNA Structure and folding. From conventional to new issues in structure predictions. Curr. Opin. Struct. Biol. 7, 229–235.CrossRefGoogle Scholar
  57. Spiegelman, S. (1971). An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4, 213–253.CrossRefGoogle Scholar
  58. Stadler, P. F. (1995). Towards a theory of landscapes, in Complex Systems and Binary Networks, R. Lopéz-Peña, R. Capovilla, R. García-Pelayo, H. Waelbroeck and F. Zertuche (Eds), Berlin, New York: Springer Verlag, pp. 77–163.Google Scholar
  59. Swetina, J. and P. Schuster (1982). Self-replication with errors—A model for polynucleotide replication. Biophys. Chem. 16, 329–345.CrossRefGoogle Scholar
  60. Tacker, M., P. F. Stadler, E. G. Bornberg-Bauer, I. L. Hofacker and P. Schuster (1996). Algorithm independent properties of RNA secondary structure predictions. Eur. Biophys. J. 25, 115–130.CrossRefGoogle Scholar
  61. Thompson, C. J. and J. L. McBride (1974). On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21, 127–142.MathSciNetCrossRefMATHGoogle Scholar
  62. Waterman, M. S. (1978). Secondary structures of single stranded nucleic acids. Adv. Math. (Suppl. Studies) 1, 167–212.MATHMathSciNetGoogle Scholar
  63. Waterman, M. S. (1995). Introduction to Computational Biology: Maps, Sequences, and Genomes, Boca Raton, FL: Chapman & Hall.MATHGoogle Scholar
  64. (1997). Evolutionary Biotechnology—From Theory to Experiment, A Special Issue of Biophys. Chem., Volume 66(2–3), A. Watts and G. Schwarz (Eds), Amsterdam: Elsevier.Google Scholar
  65. Wiehe, T. and P. Schuster Replication-mutation dynamics on different classes of fitness landscapes. Unpublished, 1997.Google Scholar
  66. Wilson, D. S. and J. W. Szostak (1999). In Vitro selection of fuctional nucleic acids. Annu. Rev. Biochem. 68, 611–647.CrossRefGoogle Scholar
  67. Wuchty, S., W. Fontana, I. L. Hofacker and P. Schuster (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165.CrossRefGoogle Scholar
  68. Zuckerkandl, E. (1997). Neutral and nonneutral mutations: The creative mix—Evolution of complexity in gene interaction systems. J. Mol. Evol. 44(Suppl.1), S2–S8.CrossRefGoogle Scholar
  69. Zuckerkandl, E. and L. Pauling (1965). Evolutionary divergence and convergence in proteins, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel (Eds), New York: Academic Press, pp. 97–166.Google Scholar
  70. Zuker, M. and P. Stiegler (1981). Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148.Google Scholar

Copyright information

© Society for Mathematical Biology 2001

Authors and Affiliations

  • Christian Reidys
    • 2
    • 3
  • Christian V. Forst
    • 2
  • Peter Schuster
    • 1
    • 3
  1. 1.Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität WienWienAustria
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Santa Fe InstituteSanta FeUSA

Personalised recommendations