Bulletin of Mathematical Biology

, Volume 62, Issue 6, pp 1163–1189 | Cite as

Survival and production in variable resource environments

  • Erik B. MullerEmail author
  • Roger M. Nisbet


A dynamic energy budget (DEB) model describes the rates at which organisms assimilate and utilize energy from food for maintenance, growth, reproduction and development. We study the dynamic behavior of one particular DEB model, Kooijman’s κ rule model, whose key assumption is that somatic and reproductive tissues are competing for energy. We assume an environment in which the food density fluctuates either periodically or stochastically (pink noise). Both types of fluctuations stimulate growth; the magnitude of the (average) increase in size depends on both the strength and duration of the fluctuations. In a stochastic environment, the risk of mortality due to starvation increases with increasing fluctuation intensity. The mean lifespan is also a function of the model parameter κ characterizing the partitioning of energy between somatic and reproductive tissues. Organisms committing a large fraction of resources to reproduction endure periods of food shortage relatively well. The effects of food fluctuations on reproduction are complex. With stochastic food, reproduction in survivors increases with increasing fluctuation intensities, but lifetime reproduction decreases. Periodic fluctuations may enhance reproduction, depending on the value of κ. Thus, a variable food supply stimulates growth, increases mortality and may enhance reproduction, depending on life history.


Energy Reserve Food Environment Mytilus Edulis Food Density Rule Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, J. H. and M. V. Lomolino (1998). Biogeography, 2nd edn, Sunderland, MD: Sinauer Associates, Inc.Google Scholar
  2. De Roos, A. M. (1997). A gentle introduction to physiologically structured population models, in Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, Vol. 18, S. Tuljapurkar and H. Caswell (Eds), New York: Chapman & Hall, pp. 119–204.Google Scholar
  3. Duclaux, E. (1898). Traité de Microbiologie, Paris: Masson et Compagnie.Google Scholar
  4. Kitchell, J. F., D. J. Stewart and D. Weininger (1977). Applications of a bioenergetics model to perch (Perca flavescens) and walleye (Stizostedion vitreum). J. Fish. Res. Board of Canada 34, 1922–1935.Google Scholar
  5. Kooi, B. W. and S. A. L. M. Kooijman (1994). Existence and stability of microbial prey-predator systems. J. Theor. Biol. 170, 75–85.CrossRefGoogle Scholar
  6. Kooijman, S. A. L. M. (1986). Population dynamics on basis of budgets, in The dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, J. A. J Metz and O. Diekmann (Eds), Berlin: Springer Verlag.Google Scholar
  7. Kooijman, S. A. L. M. (2000). Dynamic Energy and Mass Budgets In Biological Systems, Cambridge: Cambridge University Press.Google Scholar
  8. Kooijman, S. A. L. M. and J. J. M. Bedaux (1996a). Analysis of toxicity tests on Daphnia survival and reproduction. Water Res. 30, 1711–1723.CrossRefGoogle Scholar
  9. Kooijman, S. A. L. M. and J. J. M. Bedaux (1996b). Some statistical properties of estimates of no-effect concentrations. Water Res. 30, 1724–1728.CrossRefGoogle Scholar
  10. Kooijman, S. A. L. M., B. W. Kooi and T. G. Hallam (1999). The application of mass and energy conservation laws in physiologically structured population models of heterotrophic organisms. J. Theor. Biol. 197, 371–392.CrossRefGoogle Scholar
  11. Kooijman, S. A. L. M. and R. M. Nisbet How light and nutrients affect life in a closed bottle. Lewis Publishers, Thermodynamics and Ecology, in press.Google Scholar
  12. Kooijman, S. A. L. M., N. van der Hoeven and D. C. van der Werf (1989). Population consequences of a physiological model for individuals. Funct. Ecol. 3, 325–336.Google Scholar
  13. Lika, K. and R. M. Nisbet A dynamic energy budget model based on partitioning of net production. J. Math. Biol., in press.Google Scholar
  14. Mangel, M. (1996). Computing expected reproductive success of female atlantic salmon as a function of smolt size. J. Fish Biol. 49, 877–882.Google Scholar
  15. McCauley, E., W. W. Murdoch, R. M. Nisbet and W. S. C. Gurney (1990). The physiological ecology of Daphnia—development of a model of growth and reproduction. Ecology 71, 703–715.CrossRefGoogle Scholar
  16. Nisbet, R. M. and W. S. C. Gurney (1982). Modelling Fluctuating Populations, New York: John Wiley & Sons.zbMATHGoogle Scholar
  17. Nisbet, R. M., A. H. Ross and A. J. Brooks (1996). Empirically-based dynamic energy budget models: theory and an application to ecotoxicology. Nonlinear World 3, 85–106.zbMATHGoogle Scholar
  18. Paloheimo, J. E., S. J. Crabtree and W. D. Taylor (1982). Growth model of Daphnia. Can. J. Fish. Aquat. Sci. 39, 598–606.CrossRefGoogle Scholar
  19. Ross, A. H. and R. M. Nisbet (1990). Dynamic models of growth and reproduction of the mussel Mytilus edulis l. Funct. Ecol. 4, 777–787.Google Scholar
  20. Seed, R. (1976). Ecology, in Marine Mussels, their Ecology and Physiology, B. L. Bayne (Ed.), Cambridge, UK: Cambridge University Press, pp. 13–65.Google Scholar
  21. Van Haren, R. J. F. and S. A. L. M. Kooijman (1993). Application of a dynamic energy budget model to Mytilus edulis (l). Neth. J. Sea Res. 31, 119–133.CrossRefGoogle Scholar
  22. von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231.CrossRefGoogle Scholar
  23. Zonneveld, C. and S. A. L. M. Kooijman (1989). Application of a dynamic energy budget model to Lymnaea stagnalis (l). Funct. Ecol. 3, 269–278.Google Scholar

Copyright information

© Society for Mathematical Biology 2000

Authors and Affiliations

  1. 1.Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations