Bulletin of Mathematical Biology

, Volume 62, Issue 5, pp 977–998 | Cite as

Seasonal temperature alone can synchronize life cycles

  • James A. Powell
  • Janette L. Jenkins
  • Jesse A. Logan
  • Barbara J. Bentz
Article

Abstract

In this paper we discuss the effects of yearly temperature variation on the development and seasonal occurrence of poikiliothermic organisms with multiple life stages. The study of voltinism in the mountain pine beetle (Dendroctonus ponderosae Hopkins), an important forest insect living in extreme temperature environments and exhibiting no diapause, provides a motivational example. Using a minimal model for the rates of aging it is shown that seasonal temperature variation and minimal stage-specific differences in rates of aging are sufficient to create stable uni-and multi-voltine oviposition cycles. In fact, these cycles are attracting and therefore provide an exogenous mechanism for synchronizing whole populations of organisms. Structural stability arguments are used to extend the results to more general life systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amman, G. D. and W. E. Cole (1983). Mountain pine beetle dynamics in lodgepole pine forests. Part II. Population dynamics. USDA Forest Service GTR-INT-145, Ogden, Utah.Google Scholar
  2. Arnold, V. I. and A. Avez (1968). Ergodic Problems of Classical Mechanics, New York: Benjamin.Google Scholar
  3. Bentz, B. J., J. A. Logan and G. D. Amman (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Can. Entomol. 123, 1083–1094.Google Scholar
  4. Danks, H. V. (1987). Insect Dormancy: An Ecological Prospective, Monograph Series 1, Ottawa: Biological Survey of Canada (Terrestrial Arthropods).Google Scholar
  5. Guckenheimer, J. and P. Holmes (1983). Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd edn, Berlin: Springer-Verlag.Google Scholar
  6. Logan, J. A. (1988). Toward an expert system for development of pest simulation models. Environ. Entomol. 17, 359–376.Google Scholar
  7. Logan, J. A. and G. D. Amman (1986). A distribution model for egg development in mountain pine beetle. Can. Entomol. 118, 361–372.Google Scholar
  8. Logan, J. A. and B. J. Bentz (1999). Model analysis of mountain pine beetle (Coleoptera: Scolytidae) seasonality. Environ. Entomol. 28, 924–934.Google Scholar
  9. Logan, J. A., D. J. Wollkind, S. C. Hoyt and L. K. Tanigoshi (1976). An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133–1140.Google Scholar
  10. Reid, R. W. (1962). Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia. I. Life cycle, brood development and flight periods. Can. Entomol. 94, 531–538.CrossRefGoogle Scholar
  11. Safranyik, L. and H. S. Whitney (1985). Development and survival of axenically reared mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), at constant temperatures. Can. Entomol. 117, 185–192.CrossRefGoogle Scholar
  12. Taylor, F. (1981). Ecology and evolution of physiological time in insects. Am. Nat. 117, 1–23.CrossRefGoogle Scholar
  13. Wygant, N. D. (1942). Effects of low temperature on the Black Hills beetle (Dendroctonus ponderosae). Unpublished report. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, Colorado.Google Scholar
  14. Zaslavski, V. A. (1988). Insect Development: Photoperiodic and Temperature Control, Berlin: Springer.Google Scholar

Copyright information

© Society for Mathematical Biology 2000

Authors and Affiliations

  • James A. Powell
    • 1
  • Janette L. Jenkins
    • 1
  • Jesse A. Logan
    • 2
  • Barbara J. Bentz
    • 2
  1. 1.Department of Mathematics and StatisticsUtah State UniversityLoganUSA
  2. 2.USDA Forest Service Forestry Sciences LabUtah State UniversityLoganUSA

Personalised recommendations