Bulletin of Mathematical Biology

, Volume 62, Issue 3, pp 483–499 | Cite as

Enzyme kinetics at high enzyme concentration

Article

Abstract

We re-visit previous analyses of the classical Michaelis-Menten substrate-enzyme reaction and, with the aid of the reverse quasi-steady-state assumption, we challenge the approximation d[C]/dt ≈ 0 for the basic enzyme reaction at high enzyme concentration. For the first time, an approximate solution for the concentrations of the reactants uniformly valid in time is reported. Numerical simulations are presented to verify this solution. We show that an analytical approximation can be found for the reactants for each initial condition using the appropriate quasi-steady-state assumption. An advantage of the present formalism is that it provides a new procedure for fitting experimental data to determine reaction constants. Finally, a new necessary criterion is found that ensures the validity of the reverse quasi-steady-state assumption. This is verified numerically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberty, R. A. (1956). Enzyme kinetics, in Advances in Enzymology and Related Subjects of Biochemistry, Vol. 17, F. F. Nord (Ed.), New York: Interscience Publishers, pp. 1–64.Google Scholar
  2. Alberty, R. A. (1959). The rate equation for an enzymic reaction, in The Enzymes, 2nd edn Vol. 1, P. D. Boyer, H. Lardy and K. Myrback (Eds), New York: Academic Press, pp. 143–155.Google Scholar
  3. Barry, D. A., S. J. Barry and P. J. Culligan-Hensley (1995). Algorithm 743: a Fortran routine for calculating real values of the W-function. ACM Trans. Math. Softw. 21, 172–181.MathSciNetCrossRefGoogle Scholar
  4. Barry, D. A., P. J. Culligan-Hensley and S. J. Barry (1995). Real values of the W-function. ACM Trans. Math. Softw. 21, 161–171.MathSciNetCrossRefGoogle Scholar
  5. Borghans, J. A. M., R. J. De Boer and L. A. Segel (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63.CrossRefGoogle Scholar
  6. Briggs, G. E. and J. B. S. Haldane (1925). A note on the kinetics of enzyme action. Biochem. J. 19, 338–339.Google Scholar
  7. Cha, S. (1970). Kinetic behavior at high enzyme concentrations. J. Biol. Chem. 245, 4814–4818.Google Scholar
  8. Cha, S. and C.-J. M. Cha (1965). Kinetics of cyclic enzyme systems. Mol. Pharmacol. 1, 178–189.Google Scholar
  9. Corless, R. M., G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth (1996). On the Lambert W function. Adv. Comput. Math. 5, 329–359.MathSciNetCrossRefGoogle Scholar
  10. Dixon, M. (1972). The graphical determination of K M and K i. Biochem. J. 129, 197–202.Google Scholar
  11. Fersht, A. R. (1985). Enzyme Structure and Mechanism, New York: Freeman, pp. 84–102.Google Scholar
  12. Fritsch, F. N., R. E. Shafer and W. P. Crowley (1973). Algorithm 443: solution of the transcendental equation we w = x. Commun. ACM 16, 123–124.CrossRefGoogle Scholar
  13. Goldstein, A. (1944). The mechanism of enzyme-inhibitor-substrate reactions. J. Gen. Physiol. 27, 529–580.CrossRefGoogle Scholar
  14. Goudar, C. T., J. R. Sonnad and R. G. Duggleby (1999). Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. Biochim. Biophys. Acta 1429, 377–383.Google Scholar
  15. Haldane, J. B. S. and K. G. Stern (1932). Allgemeine Chemie der Enzyme, Dresden: Verlag von Steinkopff, pp. 119–120.Google Scholar
  16. Hearon, J. Z., S. A. Bernhard, S. L. Friess, D. J. Botts and M. F. Morales (1959). Enzyme kinetics, in The Enzymes, 2nd edn, Vol. 1, P. D. Boyer, H. Lardy and K. Myrbäck (Eds), New York: Academic Press, pp. 49–142.Google Scholar
  17. Henderson, P. J. F. (1973). Steady-state enzyme kinetics with high-affinity substrates or inhibitors. Biochem. J. 135, 101–107.Google Scholar
  18. Hommes, F. A. (1962). The integrated Michaelis-Menten equation. Arch. Biochem. Biophys. 96, 28–31.CrossRefGoogle Scholar
  19. Laidler, K. J. (1955). Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624.CrossRefGoogle Scholar
  20. Lim, H. C. (1973). On kinetic behavior at high enzyme concentrations. AIChE J. 19, 659–661.CrossRefGoogle Scholar
  21. Lin, C. C. and L. A. Segel (1988). Mathematics Applied to Deterministic Problems in the Natural Sciences, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), pp. 303–320.Google Scholar
  22. Lineweaver, H. and D. Burk (1934). The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–566.CrossRefGoogle Scholar
  23. Michaelis, L. and M. L. Menten (1913). Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369.Google Scholar
  24. Reiner, J. M. (1969). Behavior of Enzyme Systems, New York: Van Nostrand Reinhold Company, pp. 82–90.Google Scholar
  25. Schauer, M. and R. Heinrich (1979). Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction. J. Theor. Biol. 79, 425–442.CrossRefGoogle Scholar
  26. Schnell, S. and C. Mendoza (1997). Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 207–212.CrossRefGoogle Scholar
  27. Schulz, A. R. (1994). Enzyme Kinetics. From Diastase to Multi-enzyme Systems, Cambridge: Cambridge University Press, pp. 3–29.Google Scholar
  28. Segel, I. H. (1975). Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, New York: Wiley, pp. 18–99.Google Scholar
  29. Segel, L. A. (1984). Modelling Dynamic Phenomena in Molecular and Cellular Biology, New York: Cambridge University Press, pp. 51–62.Google Scholar
  30. Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593.MATHMathSciNetCrossRefGoogle Scholar
  31. Segel, L. A. and M. Slemrod (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.MathSciNetCrossRefGoogle Scholar
  32. Sols, A. and R. Marco (1970). Concentrations of metabolites and binding sites. Implications in metabolic regulation, in Current Topics in Cellular Regulation, Vol. 2, B. Horecker and E. Stadtman (Eds), New York: Academic Press, pp. 227–273.Google Scholar
  33. Srere, P. A. (1967). Enzyme concentrations in tissues. Science 158, 936–937.Google Scholar
  34. Stayton, M. M. and H. J. Fromm (1979). A computer analysis of the validity of the integrated Michaelis-Menten equation. J. Theor. Biol. 78, 309–323.CrossRefGoogle Scholar
  35. Straus, O. H. and A. Goldstein (1943). Zone behavior of enzyme. J. Gen. Physiol. 26, 559–585.CrossRefGoogle Scholar
  36. van Slyke, D. D. and G. E. Cullen (1914). The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180.Google Scholar
  37. Walter, C. (1966). Quasi-steady state in a general enzyme system. J. Theor. Biol. 11, 181–206.CrossRefGoogle Scholar
  38. Walter, C. F. and M. F. Morales (1964). An analogue computer investigation of certain issues in enzyme kinetics. J. Biol. Chem. 239, 1277–1283.Google Scholar
  39. Wong, J. T. (1965). On steady-state method of enzyme kinetics. J. Am. Chem. Soc. 87, 1788–1793.CrossRefGoogle Scholar
  40. Wright, E. M. (1959). Solution of the equation z exp.(z) = a. Proc. R. Soc. Edinburgh, A 65, 193–203.MATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2000

Authors and Affiliations

  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordUK

Personalised recommendations