Bulletin of Mathematical Biology

, Volume 62, Issue 3, pp 451–466 | Cite as

Evolution in knockout conflicts: The fixed strategy case

  • M. Broom
  • C. Cannings
  • G. T. Vickers


A group of individuals resolve their disputes by a knockout tournament. In each round of the tournament, the remaining contestants form pairs which compete, the winners progressing to the next round and the losers being eliminated. The payoff received depends upon how far the player has progressed and a cost is incurred only when it is defeated. We only consider strategies in which individuals are constrained to adopt a fixed play throughout the successive rounds. The case where individuals can vary their choice of behaviour from round to round will be treated elsewhere. The complexity of the system is investigated and illustrated both by special cases and numerical examples.


Payoff Broom Dominance Hierarchy Evolutionarily Stable Strategy Successive Round 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, R. and W. D. Hamilton (1981). The evolution of cooperation. Science 211, 1390–1396.MathSciNetGoogle Scholar
  2. Barnard, C. J. and T. E. Burk (1979). Dominance hierarchies and the evolution of individual recognition. J. Theor. Biol. 81, 65–73.CrossRefGoogle Scholar
  3. Binmore, K. (1992). Fun and Games (a Text on Game Theory), Lexington, Massachusetts: Heath.Google Scholar
  4. Bishop, D. T. and C. Cannings (1976). Models of animal conflict. Adv. Appl. Probab. 8, 616–621.CrossRefGoogle Scholar
  5. Broom, M., C. Cannings and G. T. Vickers (1997b). Choosing a nest site: contests and catalysts. Am. Nat. 147, 1108–1114.CrossRefGoogle Scholar
  6. Broom, M., C. Cannings and G. T. Vickers (1997a). A sequential-arrivals model of territory acquisition. J. Theor. Biol. 189, 257–272.CrossRefGoogle Scholar
  7. Broom, M., C. Cannings and G. T. Vickers (1997b). Multi-player matrix games. Bull. Math. Biol. 59, 931–952.CrossRefGoogle Scholar
  8. Cannings, C. and J. C. Whittaker (1994). The finite horizon war of attrition. Games Econ. Behav. 11, 193–236.MathSciNetCrossRefGoogle Scholar
  9. Cressman, R. (1992). The Stability Concept of Evolutionary Game Theory: A Dynamic Approach, Lecture Notes Biomathematics, 94, Berlin: Springer-Verlag.Google Scholar
  10. Emlen, S. T. (1996). Reproductive sharing in different types of kin associations. Am. Nat. 150, 542–558.Google Scholar
  11. Grafen, A. (1990a). Sexual selection unhandicapped by the Fisher process. J. Theor. Biol. 144, 473–516.MathSciNetGoogle Scholar
  12. Grafen, A. (1990b). Biological signals as handicaps. J. Theor. Biol. 144, 517–546.MathSciNetGoogle Scholar
  13. Haigh, J. (1975). Game theory and evolution. Adv. Appl. Probab. 7, 8–11.zbMATHCrossRefGoogle Scholar
  14. Haigh, J. and C. Cannings (1989). The n-person war of attrition. Acta Appl. Math. 14, 59–74.MathSciNetCrossRefGoogle Scholar
  15. Hofbauer, J. and K. Sigmund (1988). The Theory of Evolution and Dynamical Systems, Lexington, Massachusetts: Cambridge University Press.Google Scholar
  16. Hoglund, J. and R. V. Alatalo (1995). Leks, Princeton, NJ: Princeton University Press.Google Scholar
  17. Keller, L. and H. K. Reeve (1994). Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–103.CrossRefGoogle Scholar
  18. Luce, R. D. and H. Raiffa (1957). Games and Decisions, Wiley.Google Scholar
  19. Maynard Smith, J. (1982). Evolution and the Theory of Games, Lexington, Massachusetts: Cambridge University Press.Google Scholar
  20. Maynard Smith, J. and G. R. Price (1973). The logic of animal conflict. Nature 246, 15–18.CrossRefGoogle Scholar
  21. Mesterton-Gibbons, M. and L. A. Dugatkin (1995). Towards a theory of dominance hierarchies: effect of assessment, group size and variation in fighting ability. Behav. Ecol. 6, 416–423.Google Scholar
  22. Moehlman, P. D. (1979). Jackal helpers and pup survival. Nature 277, 382–383CrossRefGoogle Scholar
  23. Reeve, H. K. and L. Keller (1996). Relatedness asymmetry and reproductive sharing in animal societies. Am. Nat. 148, 764–769.CrossRefGoogle Scholar
  24. Riley, J. G. (1979). Evolutionary equilibrium strategies. J. Theor. Biol. 76, 109–123.MathSciNetCrossRefGoogle Scholar
  25. Rood, J. P. (1980). Mating relationships and breeding suppression in the dwarf mongoose. Anim. Behav. 28, 143–150.CrossRefGoogle Scholar
  26. Thomas, B. and H. J. Pohley (1981). ESS theory for finite populations. Biosystems 13, 211–221.CrossRefGoogle Scholar
  27. Vehrencamp, S. L. (1983). A model for the evolution of despotic versus egalitarian societies. Anim. Behav. 31, 667–682.CrossRefGoogle Scholar
  28. Vehrencamp, S. L., R. R. Koford and B. S. Bowen (1988). in Reproductive Success, T. H. Clutton-Brock (Ed.), University Chicago Press, pp. 291–304.Google Scholar
  29. von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic Behaviour, Princeton, NJ: Princeton University Press.Google Scholar

Copyright information

© Society for Mathematical Biology 2000

Authors and Affiliations

  • M. Broom
    • 1
  • C. Cannings
    • 2
  • G. T. Vickers
    • 3
  1. 1.Centre for Statistics and Stochastic Modelling, School of Mathematical SciencesUniversity of SussexSussexUK
  2. 2.Division of Molecular and Genetic MedicineUniversity of SheffieldSheffieldUK
  3. 3.Department of Applied MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations