Bulletin of Mathematical Biology

, Volume 62, Issue 2, pp 247–292 | Cite as

Modeling transcriptional control in gene networks—methods, recent results, and future directions

Article

Abstract

Mathematical models are useful for providing a framework for integrating data and gaining insights into the static and dynamic behavior of complex biological systems such as networks of interacting genes. We review the dynamic behaviors expected from model gene networks incorporating common biochemical motifs, and we compare current methods for modeling genetic networks. A common modeling technique, based on simply modeling genes as ON—OFF switches, is readily implemented and allows rapid numerical simulations. However, this method may predict dynamic solutions that do not correspond to those seen when systems are modeled with a more detailed method using ordinary differential equations. Until now, the majority of gene network modeling studies have focused on determining the types of dynamics that can be generated by common biochemical motifs such as feedback loops or protein oligomerization. For example, these elements can generate multiple stable states for gene product concentrations, state-dependent responses to stimuli, circadian rhythms and other oscillations, and optimal stimulus frequencies for maximal transcription. In the future, as new experimental techniques increase the ease of characterization of genetic networks, qualitative modeling will need to be supplanted by quantitative models for specific systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, T., K. C. Martin, D. Bartsch and E. R. Kandel (1998). Memory suppressor genes: inhibitory constraints on the storage of long-term memory. Science 279, 338–341.CrossRefGoogle Scholar
  2. Adams, C. C. and J. L. Workman (1995). Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421.Google Scholar
  3. Angel, P., K. Hattori, T. Smeal and M. Karin (1988). The jun proto-oncogene is positively autoregulated by its product, Jun—AP-1. Cell 55, 875–885.CrossRefGoogle Scholar
  4. Arkin, A., J. Ross and H. McAdams (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected E. coli cells. Genetics 149, 1633–1648.Google Scholar
  5. Arkin, A., P. Shen and J. Ross (1997). A test case of correlation metric construction of a reaction pathway from measurements. Science 277, 1275–1279.CrossRefGoogle Scholar
  6. Bagley, R. J. and L. Glass (1996). Counting and classifying attractors in high dimensional dynamical systems. J. Theor. Biol. 183, 269–284.CrossRefGoogle Scholar
  7. Banks, H. and J. M. Mahaffy (1978). Stability of cyclic gene models for systems involving expression. J. Theor. Biol. 74, 323–334.MathSciNetCrossRefGoogle Scholar
  8. Bartsch, D., A. Casadio, K. A. Karl, P. Serodio and E. R. Kandel (1998). CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223.CrossRefGoogle Scholar
  9. Bartsch, D., M. Ghirardi, P. Skehel, K. A. Karl, S. Herder, M. Chen, C. Bailey and E. R. Kandel (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts a transient facilitation into long-term functional and structural change. Cell 83, 979–992.CrossRefGoogle Scholar
  10. Bazhan, S. I., V. A. Likhosvai and O. E. Belova (1995). Theoretical analysis of the regulation of interferon expression during priming and blocking. J. Theor. Biol. 175, 149–160.CrossRefGoogle Scholar
  11. Blattner, F. R. et al. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.CrossRefGoogle Scholar
  12. Bliss, R. D., P R. Painter and A. G. Marr (1982). Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–93.CrossRefGoogle Scholar
  13. Blumenfeld, H., L. Zablow and B. Sabatini (1992). Evaluation of cellular mechanisms for modulation of Ca2+ transients using a mathematical model of fura-2 Ca2+ imaging in Aplysia sensory neurons. Biophys. J. 63, 1146–1164.Google Scholar
  14. Boden, J. (1997). Programming the Drosophila embryo. J. Theor. Biol. 188, 391–445.CrossRefGoogle Scholar
  15. Busenberg, S. and J. M. Mahaffy (1985). Interaction of spatial diffusion and delays in models of genetic control by repression. J. Math. Biol. 22, 313–333.MathSciNetCrossRefMATHGoogle Scholar
  16. Byrne, J. H. et al. (1991). Neural and molecular bases of nonassociative and associative learning in Aplysia. Ann. New York Acad. Sci. 627, 124–149.Google Scholar
  17. The C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.CrossRefGoogle Scholar
  18. Carrier, T. A. and J. D. Keasling (1997). Mechanistic modeling of prokaryotic mRNA decay. J. Theor. Biol. 189, 195–209.CrossRefGoogle Scholar
  19. Carrion, A. M., W. A. Link, F. Ledo, B. Mellstrom and J. R. Naranjo (1999). DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84.CrossRefGoogle Scholar
  20. Castano, J., R. Kineman and L. S. Frawley (1996). Dynamic monitoring and quantification of gene expression in single, living cells: a molecular basis for secretory cell heterogeneity. Mol. Endocrinol. 10, 599–605.CrossRefGoogle Scholar
  21. Cole, S. T. et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.CrossRefGoogle Scholar
  22. Collado-Vides, J., B. Magasanik and J. D. Gralla (1991). Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55, 371–394.Google Scholar
  23. Collins, F. S., A. Patrinos, E. Jordan, A. Chakravati, R. Gesteland and L. Walters (1998). New goals for the U.S. human genome project: 1998–2003. Science 282, 682–689.CrossRefGoogle Scholar
  24. Dash, P. K. and A. N. Moore (1996). Characterization and phosphorylation of CREB-like proteins in Aplysia central nervous system. Brain Res. Mol. Brain Res. 39, 43–51.CrossRefGoogle Scholar
  25. Doedel, E. (1981). AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Num. 30, 265–284.MATHMathSciNetGoogle Scholar
  26. Donachie, W. D. (1993). The cell cycle of Escherichia coli. Ann. Rev. Microbiol. 47, 199–230.CrossRefGoogle Scholar
  27. Dorman, C. J. (1995). DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. Microbiology (Reading) 141, 1271–1280.CrossRefGoogle Scholar
  28. Edwards, D. R. (1994). Cell signaling and the control of gene transcription. Trends Pharmacol. Sci. 15, 239–244.CrossRefGoogle Scholar
  29. Eisen, M. B., P. T. Spellman, P. O. Brown and D. Botstein (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868.Google Scholar
  30. Femino, A. M., F. S. Fay, K. Fogarty and R. H. Singer (1998). Visualization of single RNA transcripts in situ. Science 280, 585–590.CrossRefGoogle Scholar
  31. Gartner, K. (1990). A third component causing variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77.MathSciNetGoogle Scholar
  32. Gerhold, D., T. Rushmore and C. T. Caskey (1999). DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173.CrossRefGoogle Scholar
  33. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 61, 2340–2361.CrossRefGoogle Scholar
  34. Glass, L. and S. A. Kauffman (1973). The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.CrossRefGoogle Scholar
  35. Glazewski, S., A. L. Barth, H. Wallace, M. McKenna, A. Silva and K. Fox (1999). Impaired experience-dependent plasticity in barrel cortex of mice lacking the α and δ isoforms of CREB. Cereb. Cortex 9, 249–256.CrossRefGoogle Scholar
  36. Goldbeter, A. (1995). A model for circadian oscillations in the Drosophila period (PER) protein. Proc. R. Soc. Lond. Ser. B 261, 319–324.Google Scholar
  37. Goodwin, B. C. (1965). Oscillatory behavior of enzymatic control processes. Adv. Enzyme Reg. 3, 425–439.CrossRefGoogle Scholar
  38. Griffith, J. S. (1968a). Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 20, 202–208.CrossRefGoogle Scholar
  39. Griffith, J. S. (1968b). Mathematics of cellular control processes. II. Positive feedback to one gene. J. Theor. Biol. 20, 209–216.CrossRefGoogle Scholar
  40. Guckenheimer, J. and P. Holmes (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer-Verlag.MATHGoogle Scholar
  41. Guzowski, J. and J. L. McGaugh (1997). Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698.CrossRefGoogle Scholar
  42. Hammond, B. J. (1993). Quantitative study of the control of HIV-1 gene expression. J. Theor. Biol. 163, 199–221.CrossRefGoogle Scholar
  43. Hauri, D. C. and J. Ross (1995). A model of excitation and adaptation in bacterial chemotaxis. Biophys. J. 68, 708–722.Google Scholar
  44. Hevroni, D. et al. (1998). Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J. Mol. Neurosci. 10, 75–98.Google Scholar
  45. Hicks, K. A. and A. D. Grossman (1996). Altering the level and regulation of the major sigma subunit of RNA polymerase affects gene expression and development in Bacillus subtilus. Mol. Microbiol. 20, 201–212.Google Scholar
  46. Hilsenbeck, S. G., W. E. Friedrichs, R. Schiff, P. O’Connell, R. K. Hansen, C. K. Osborne and S. A. Fuqua (1999). Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J. Natl. Cancer Inst. 91, 453–459.CrossRefGoogle Scholar
  47. Howard, P. and R. Maurer (1995). A composite Ets/Pit-1 binding site in the prolactin gene can mediate transcriptional responses to multiple signal transduction pathways. J. Biol. Chem. 270, 20930–20936.Google Scholar
  48. Hunter, J., A. Kassam, C. Winrow, R. Rachubinski and J. Capone (1996). Crosstalk between the thyroid hormone and peroxisome proliferator-activated receptors in regulating peroxisome proliferator-responsive genes. J. Mol. Cell. Endocr. 116, 213–221.CrossRefGoogle Scholar
  49. Ishiura, M., S. Kutsuna, S. Aoki, H. Iwasaki, C. Andersson, A. Tanabe, S. Golden, C. Johnson and T. Kondo (1998). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523.CrossRefGoogle Scholar
  50. Itoh, K., B. Stevens, M. Schachner and R. D. Fields (1995). Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270, 1369–1372.Google Scholar
  51. Iyer, V. et al. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87.CrossRefGoogle Scholar
  52. Jacobs, C. and L. Shapiro (1998). Microbial asymmetric cell division: localization of cell fate determinants. Curr. Opin. Gen. Dev. 8, 386–391.CrossRefGoogle Scholar
  53. Jacob, F. and J. Monod (1961). On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol. 26, 193–211, 389–401.Google Scholar
  54. Karin, M. (1994). Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6, 415–424.CrossRefGoogle Scholar
  55. Keizer, J. (1987). Statistical Thermodynamics of Equilibrium Processes, New York: Springer-Verlag.Google Scholar
  56. Keller, A. (1994). Specifying epigenetic states with autoregulatory transcription factors. J. Theor. Biol. 170, 175–181.CrossRefGoogle Scholar
  57. Keller, A. (1995). Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol. 172, 169–185.CrossRefGoogle Scholar
  58. Kerszberg, M. (1996). Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. J. Theor. Biol. 183, 95–104.CrossRefGoogle Scholar
  59. Kerszberg, M. and J. Changeux (1994). A model for reading morphogenetic gradients: autocatalysis and competition at the gene level. Proc. Natl. Acad. Sci. USA 91, 5823–5827.CrossRefGoogle Scholar
  60. Kientzle, M. J. (1946). Properties of learning curves under varied distributions of practice. J. Exp. Psychol. 36, 187–211.CrossRefGoogle Scholar
  61. King, M. L. (1996). Molecular basis for cytoplasmic localization. Dev. Genet. 19, 183–189.CrossRefGoogle Scholar
  62. Ko, M. (1991). A stochastic model for gene induction. J. Theor. Biol. 153, 181–194.Google Scholar
  63. Koh, B. T., R. B. Tan and M. G. Yap (1998). Genetically structured mathematical modeling of trp attenuator mechanism. Biotech. Bioeng. 58, 502–509.CrossRefGoogle Scholar
  64. Kouzarides, T. and E. Ziff (1988). The role of the leucine zipper in the fos—jun interaction. Nature 336, 646–651.CrossRefGoogle Scholar
  65. Lamprecht, R., S. Hazvi and Y. Dudai (1997). cAMP response element-binding protein in the amygdala is required for long-but not short-term conditioned taste aversion memory. J. Neurosci. 17, 8443–8450.Google Scholar
  66. Lee, C., K. Bae and I. Edery (1998). The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron 21, 857–867.CrossRefGoogle Scholar
  67. Leloup, J. C. and A. Goldbeter (1998). A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70–87.CrossRefGoogle Scholar
  68. Liu, B. Z., J. H. Peng, Y. C. Sun and Y. W. Liu (1997). A comprehensive dynamical model of pulsatile secretion of the hypothalamo-pituitary-gonadal axis in man. Comput. Biol. Med. 27, 507–513.CrossRefGoogle Scholar
  69. Luo, C., J. Loros and J. C. Dunlap (1998). Nuclear localization is required for function of the essential clock protein FRQ. EMBO J. 17, 1228–1235.CrossRefGoogle Scholar
  70. MacDonald, N. (1989). Biological Delay Systems: Linear Stability Theory, Cambridge: Cambridge University Press.MATHGoogle Scholar
  71. MacLeod, M. (1996). A possible role in chemical carcinogenesis for epigenetic, heritable changes in gene expression. Mol. Carcinog. 15, 241–250.CrossRefGoogle Scholar
  72. Mahaffy, J. M. (1984). Cellular control models with linked positive and negative feedback and delays. I: The models. J. Theor. Biol. 106, 89–102.CrossRefGoogle Scholar
  73. Mahaffy, J. M., D. A. Jorgensen and R. L. van der Heyden (1992). Oscillations in a model of repression with external control. J. Math. Biol. 30, 669–691.MathSciNetCrossRefMATHGoogle Scholar
  74. Mahaffy, J. M. and C. V. Pao (1984). Models of genetic control by repression with time delays and spatial effects. J. Math. Biol. 20, 39–57.MathSciNetCrossRefMATHGoogle Scholar
  75. Martin, K., D. Michael, J. Rose, M. Barad, A. Casadio, H. Zhu and E. R. Kandel (1997). MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18, 899–912.CrossRefGoogle Scholar
  76. McAdams, H. and A. Arkin (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819.CrossRefGoogle Scholar
  77. McAdams, H. and A. Arkin (1998). Simulation of prokaryotic genetic circuits. Ann. Rev. Biophys. Biomed. Struct. 27, 199–224.CrossRefGoogle Scholar
  78. McAdams, H. and L. Shapiro (1995). Circuit simulation of genetic networks. Science 269, 650–656.Google Scholar
  79. Merrow, M. W., N. Garceau and J. C. Dunlap (1997). Dissection of a circadian oscillation into discrete domains. Proc. Natl. Acad. Sci. USA 94, 3877–3882.CrossRefGoogle Scholar
  80. Mestl, T., C. Lemay and L. Glass (1996). Chaos in high-dimensional neural and gene networks. Physica D 98, 33–52.MathSciNetCrossRefMATHGoogle Scholar
  81. Mestl, T., E. Plahte and S. W. Omholt (1995a). A mathematical framework for describing and analyzing gene regulatory networks. J. Theor. Biol. 176, 291–300.CrossRefGoogle Scholar
  82. Mestl, T., E. Plahte and S. W. Omholt (1995b). Periodic solutions in systems of piecewise linear differential equations. Dyn. Stab. Systems 10, 179–183.MathSciNetMATHGoogle Scholar
  83. Meyer, T., G. Waeber, J. Lin, W. Beckmann and J. Habener (1993). The promoter of the gene encoding cAMP response element binding protein contains cAMP response elements: evidence for positive autoregulation of gene transcription. Endocrinology 132, 770–780.CrossRefGoogle Scholar
  84. Meyers, S. and P. Friedland (1984). Knowledge-based simulation of genetic regulation in bacteriophage λ. Nucleic Acids Res. 12, 1–9.Google Scholar
  85. Molina, C., N. Foulkes, E. Lalli and P. Sassone-Corsi (1993). Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, and early response repressor. Cell 75, 875–886.CrossRefGoogle Scholar
  86. Novak, B., A. Csikasz-Nagy, B. Gyorffy, K. Chen and J. J. Tyson (1998a). Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M, and metaphase/anaphase transitions. Biophys. Chem. 72, 185–200.CrossRefGoogle Scholar
  87. Novak, B., A. Csikasz-Nagy, B. Gyorffy, K. Chen and J. J. Tyson (1998b). Model scenarios for evolution of the eukaryotic cell cycle. Philos. Trans. R. Soc. Lond. Ser. B 353, 2063–2076.CrossRefGoogle Scholar
  88. Okayama, H., A. Nagata, S. Jinno and H. Murakami (1996). Cell cycle control in fission yeast and mammals: identification of new regulatory mechanisms. Adv. Cancer Res. 69, 17–62.CrossRefGoogle Scholar
  89. O’Leary, F., J. Byrne and L. Cleary (1995). Long-term structural remodeling in Aplysia sensory neurons requires de novo protein synthesis during a critical time period. J. Neurosci. 15, 3519–3525.Google Scholar
  90. Omholt, S. W., X. Kefang, O. Andersen and E. Plahte (1998). Description and analysis of switchlike regulatory networks exemplified by a model of cellular iron homeostasis. J. Theor. Biol. 195, 339–350.CrossRefGoogle Scholar
  91. Plahte, E., T. Mestl and S. W. Omholt (1994). Global analysis of steady points for systems of differential equations with sigmoid interactions. Dyn. Stab. Syst. 9, 275–291.MathSciNetMATHGoogle Scholar
  92. Plahte, E., T. Mestl and S. W. Omholt (1998). A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol. 36, 321–348.MathSciNetCrossRefMATHGoogle Scholar
  93. Polach, K. J. and J. Widom (1996). A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812.CrossRefGoogle Scholar
  94. Ptashne, M. (1992). A Genetic Switch: Phage λ and Higher Organisms, Cambridge: Cell Press/Blackwell.Google Scholar
  95. Reppert, S. M. (1998). A clockwork explosion! Neuron 21, 1–4.CrossRefGoogle Scholar
  96. Richards, J., H. Bachinger, R. Goodman and R. Brennan (1996). Analysis of the structural properties of cAMP-responsive element binding protein (CREB) and phosphorylated CREB. J. Biol. Chem. 271, 13716–13723.Google Scholar
  97. Roberts, R. C., C. D. Mohr and L. Shapiro (1996). Developmental programs in bacteria. Curr. Top. Dev. Biol. 34, 207–257.CrossRefGoogle Scholar
  98. Robertson, B. D. (1992). Genetic variation in pathogenic bacteria. Trends Genet. 8, 422–427.Google Scholar
  99. Rosen, R. (1968). Recent developments in the theory of control and regulation of cellular processes, in International Review of Cytology, G. H. Bourne (Ed.), New York: Academic Press.Google Scholar
  100. Rossant, J. and N. Hopkins (1992). Of fin and fur: mutational analysis of vertebrate embryonic development. Genes Dev. 6, 1–13.Google Scholar
  101. Sabry, J., T. O’Connor and M. W. Kirschner (1995). Axonal transport of tubulin in Ti1 Pioneer neurons in situ. Neuron 14, 1247–1256.CrossRefGoogle Scholar
  102. Sassone-Corsi, P. (1995). Transcription factors responsive to cAMP. Ann. Rev. Cell Dev. Biol. 11, 355–377.CrossRefGoogle Scholar
  103. Sassone-Corsi, P., J. C. Sisson and I. M. Verma (1988). Transcriptional autoregulation of the proto-oncogene fos. Nature 334, 314–319.CrossRefGoogle Scholar
  104. Scheper, T., D. Klinkenberg, C. Pennartz and J. van Pelt (1999). A mathematical model for the intracellular circadian rhythm generator. J. Neurosci. 19, 40–47.Google Scholar
  105. Schnitzer, M. J. and S. M. Block (1997). Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–389.CrossRefGoogle Scholar
  106. Seo, H., C. Yang, H. Kim and K. Kim (1996). Multiple protein factors interact with the cis-regulatory elements of the proximal promoter in a cell-specific manner and regulate transcription of the dopamine β-hydroxylase gene. J. Neurosci. 16, 4102–4112.Google Scholar
  107. Serfling, E. (1989). Autoregulation—a common property of eukaryotic transcription factors? Trends Gen. 5, 131–133.CrossRefGoogle Scholar
  108. Shapiro, L. and R. Losick (1997). Protein localization and cell fate in bacteria. Science 276, 712–718.CrossRefGoogle Scholar
  109. Sheng, H., R. D. Fields and P. Nelson (1993). Specific regulation of immediate-early genes by patterned neuronal activity. J. Neurosci. Res. 35, 459–467.CrossRefGoogle Scholar
  110. Smith, H. (1987a). Oscillations and multiple steady states in a cyclic gene model with repression. J. Math. Biol. 25, 169–190.MATHMathSciNetGoogle Scholar
  111. Smith, H. (1987b). Monotone semiflows generated by functional differential equations. J. Diff. Eqs. 66, 420–442.MATHCrossRefGoogle Scholar
  112. Smolen, P., D. A. Baxter and J. H. Byrne (1998). Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems. Am. J. Physiol. 274, C531–C542.Google Scholar
  113. Smolen, P., D. A. Baxter and J. H. Byrne (1999a). Effects of macromolecular transport and stochastic fluctuations on the dynamics of genetic regulatory systems. Am. J. Physiol., 277, C777–C790.Google Scholar
  114. Smolen, P., D. A. Baxter and J. H. Byrne (1999b). Modeling clarifies the role of delays and feedback in circadian oscillators. Soc. Neurosci. Abstr., 25, 867.Google Scholar
  115. Snoussi, E. H. and R. Thomas (1993). Logical identification of all steady states: The concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991.CrossRefMATHGoogle Scholar
  116. Somogyi, R. and C. Sniegoski (1996). Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1, 45–63.MathSciNetGoogle Scholar
  117. Somogyi, R. and C. Sniegoski (1997). The gene expression matrix: towards the extraction of genetic network architectures, Proceedings of the Second World Congress of Nonlinear Analysis, Elsevier Science.Google Scholar
  118. Spiro, P. A., J. Parkinson and H. Othmer (1997). A model of excitation and inhibition in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268.CrossRefGoogle Scholar
  119. Stehle, J. H., N. Foulkes, C. Molina, V. Simonneaux, P. Pevet and P. Sassone-Corsi (1993). Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365, 314–320.CrossRefGoogle Scholar
  120. Thayer, M. J., S. J. Tapscott, R. L. Davis, W. E. Wright, A. B. Lassar and H. Weintraub (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241–248.CrossRefGoogle Scholar
  121. Thomas, R. (1994). The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Ber. Bunsenges. Phys. Chem. 98, 1148–1151.Google Scholar
  122. Thomas, R. and R. d’Ari (1990). Biological Feedback, Boca Raton, FL: CRC Press.MATHGoogle Scholar
  123. Thomas, R., D. Thieffry and M. Kauffman (1995). Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276.CrossRefMATHGoogle Scholar
  124. Tomita, M. et al. (1999). E-CELL: a software environment for whole-cell simulation. Bioinformatics 15, 72–84.CrossRefGoogle Scholar
  125. Tully, T., T. Preat, S. Boynton and M. Del Vecchio (1994). Genetic dissection of consolidated memory in Drosophila melanogaster. Cell 79, 35–47.CrossRefGoogle Scholar
  126. Tyson, J. and H. G. Othmer (1978). The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol. 5, 2–62.Google Scholar
  127. Vandien, S. J. and J. D. Keasling (1998). A dynamic model of the E. coli phosphatestarvation response. J. Theor. Biol. 190, 37–49.CrossRefGoogle Scholar
  128. Von Heijne, G., C. Blomberg and H. Liljenstrom (1987). Theoretical modeling of protein synthesis. J. Theor. Biol. 125, 1–4.Google Scholar
  129. Walker, W., L. Fucci and J. Habener (1995). Expression of the gene encoding transcription factor CREB: regulation by follicle-stimulating hormone-induced cAMP signaling in primary rat sertoli cells. Endocrinology 136, 3534–3545.CrossRefGoogle Scholar
  130. Wen, X. L., S. Fuhrman, G. Michaels, D. Carr, S. Smith, J. Barker and R. Somogyi (1998). Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95, 334–339.CrossRefGoogle Scholar
  131. Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Heidelberg: Springer-Verlag.MATHGoogle Scholar
  132. Winzeler, E. A. et al. (1998). Direct allelic variation scanning of the entire yeast genome. Science 281, 1194–1197.CrossRefGoogle Scholar
  133. Wolf, D. M. and F. H. Eeckman (1998). On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol. 195, 167–186.CrossRefGoogle Scholar
  134. Wong, P., S. Gladney and J. D. Keasling (1997). A mathematical model of the lac operon-inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotech. Prog. 13, 132–143.CrossRefGoogle Scholar
  135. Yagil, G. and E. Yagil (1971). On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11–27.CrossRefGoogle Scholar
  136. Yin, J., M. Del Vecchio, H. Zhou and T. Tully (1995). CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115.CrossRefGoogle Scholar
  137. Yin, J. and T. Tully (1996). CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–267.CrossRefGoogle Scholar
  138. Yisraeli, J. K., S. Sokol and D. A. Melton (1990). A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development 108, 289–298.Google Scholar
  139. Yuh, C. H., H. Bolouri and E. H. Davidson (1998). Genomic cis-regulatory logic, experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902.CrossRefGoogle Scholar
  140. Zimmerman, S. and A. P. Minton (1993). Macromolecular crowding: biochemical, biophysical, and physiological consequences. Ann. Rev. Biophys. Biomol. Struct. 22, 27–65.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2000

Authors and Affiliations

  • Paul Smolen
    • 1
  • Douglas A. Baxter
    • 1
  • John H. Byrne
    • 1
  1. 1.Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and MemoryThe University of Texas-Houston Medical SchoolHoustonUSA

Personalised recommendations