Advertisement

Bulletin of Mathematical Biology

, Volume 61, Issue 3, pp 437–467 | Cite as

RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties

  • Christian Haslinger
  • Peter F. StadlerEmail author
Article

Abstract

The secondary structures of nucleic acids form a particularly important class of contact structures. Many important RNA molecules, however, contain pseudo-knots, a structural feature that is excluded explicitly from the conventional definition of secondary structures. We propose here a generalization of secondary structures incorporating ‘non-nested’ pseudo-knots, which we call bi-secondary structures, and discuss measures for the complexity of more general contact structures based on their graph-theoretical properties. Bi-secondary structures are planar trivalent graphs that are characterized by special embedding properties. We derive exact upper bounds on their number (as a function of the chain length n) implying that there are fewer different structures than sequences. Computational results show that the number of bi-secondary structures grows approximately like 2.35n. Numerical studies based on kinetic folding and a simple extension of the standard energy model show that the global features of the sequence-structure map of RNA do not change when pseudo-knots are introduced into the secondary structure picture. We find a large fraction of neutral mutations and, in particular, networks of sequences that fold into the same shape. These neutral networks percolate through the entire sequence space.

Keywords

Secondary Structure Contact Structure Neutral Network Outerplanar Graph Diagram Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, J. P., M. van den Berg, E. van Batenburg and C. Pleij (1990). Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucl. Acids Res. 18, 3035–3044.Google Scholar
  2. Bernhart, F. and P. C. Kainen (1979). The book thickness of a graph. J. Comb. Theor. B27, 320–331.MathSciNetCrossRefGoogle Scholar
  3. Bonhoeffer, S., J. S. McCaskill, P. F. Stadler and P. Schuster (1993). RNA multi-structure landscapes. A study based on temperature dependent partition functions. Eur. Biophys. J. 22, 13–24.CrossRefGoogle Scholar
  4. Brierley, I., N. J. Rolley, A. J. Jenner and S. C. Inglis (1991). Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol 229, 889–902.CrossRefGoogle Scholar
  5. Brown, J. W. (1991). Structure and evolution of ribonuclease P RNA. Biochemie 73, 689–697.CrossRefGoogle Scholar
  6. Cantor, C. R., P. L. Wollenzien and J. E. Hearst (1980). Structure and topology of 16S ribosomal RNA. an analysis of the pattern of psoralen crosslinking. Nucl. Acids Res. 8, 1855–1872.Google Scholar
  7. Chamorro, M., N. Parkin and H. E. Varmus (1992). An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA 89, 713–717.CrossRefGoogle Scholar
  8. Chan, H. S. and K. A Dill (1988). Interchain loops in polymers: effects of excluded volume. J. Chem. Phys. 90, 492–508.MathSciNetCrossRefGoogle Scholar
  9. Chartrand, G. and F. Harary (1967). Planar permutation graphs. Ann. Inst. Henri Poincaré B3, 433–438.MathSciNetGoogle Scholar
  10. Chen, S.-J. and Ken A. Dill (1995). Statistical thermodynamics of double-stranded polymer molecules. J. Chem. Phys. 103, 5802–5808.CrossRefGoogle Scholar
  11. Chung, F. R. K., F. T. Leighton and A. L. Rosenberg (1987). Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Alg. Disc. Math. 8, 1987.Google Scholar
  12. Dinman, J. D., T. Icho and R. B. Wickner (1991). A-1 ribosomal frameshifting in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc. Natl. Acad. Sci. USA 88, 174–178.CrossRefGoogle Scholar
  13. Dirac, G. A. (1952). A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc. 27, 85–92.zbMATHMathSciNetGoogle Scholar
  14. Even, S. and A. Itai. (1971). Queues, stacks, and graphs, in Theory of Machines and Computation, Z. Kohavi and A. Paz, (Eds), New York: Academic Press, pp. 71–86.Google Scholar
  15. Felden, B., H. Himeno, A. Muto, J. P. McCutcheon, J. Atkins and R. F. Gesteland (1997). Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA 3, 89–103.Google Scholar
  16. Fontana, W., T. Griesmacher, W. Schnabl, P. F. Stadler and P. Schuster (1991). Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures. Mh. Chem. 122, 795–819.Google Scholar
  17. Fontana, W., D. A. M. Konings, P. F. Stadler and P. Schuster (1993a). Statistics of RNA secondary structures. Biopolymers 33, 1389–1404.CrossRefGoogle Scholar
  18. Fontana W. and P. Schuster (1998). Continuity in evolution: on the nature of transitions. Science 280, 1451–1455.CrossRefGoogle Scholar
  19. Fontana, W., P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker, M. Tacker, P. Tarazona, E. D. Weinberger and P. Schuster (1993b). RNA folding and combinatory landscapes. Phys. Rev. E47, 2083–2099.Google Scholar
  20. Forster, A. C. and S. Altman (1990). Similar cage-shaped structures for the RNA component of all ribonuclease P and ribonuclease MRP enzymes. Cell 62, 407–409.CrossRefGoogle Scholar
  21. Fortsch, I., H. Fritzsche, E. Birch-Hirschfeld, E. Evertsz, R. Klement, T. M. Jovin and C. Zimmer (1996). Parallel-stranded duplex DNA containing dA·dU base pairs. Biopolymers 38, 209–220.CrossRefGoogle Scholar
  22. Freier, S. M., R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers, T. Neilson and D. H. Turner (1986). Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci., USA 83, 9373–9377.CrossRefGoogle Scholar
  23. Games, R. (1986). Optimal book embeddings of FFT, benes, and barrel shifter networks. Algorithmica 1, 233–250.zbMATHCrossRefMathSciNetGoogle Scholar
  24. Gluick, T. C. and D. E. Draper (1994). Thermodynamics of folding a pseudoknotted mRNA fragment. J. Mol. Biol. 241, 246–262.CrossRefGoogle Scholar
  25. Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster (1996a). Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks. Monath. Chem. 127, 355–374.CrossRefGoogle Scholar
  26. Grüner, W., R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F. Stadler and P. Schuster (1996b). Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structures of neutral networks and shape space covering. Monath. Chem. 127, 375–389.CrossRefGoogle Scholar
  27. Gutell, R. R., N. Larsen and C. R. Woese (1994). Lessons from an evolving rRNA: 16S and 23S rRNA from a comparative perspective. Microbiol. Rev. 58, 10–26.Google Scholar
  28. Haas, E. S., D. P. Morse, J. W. Brown, J. F. Schmidt and N. R. Pace (1991). Long-range structure in ribonuclease P RNA. Science 254, 853–856.Google Scholar
  29. Haslinger, Christian (1997). RNA secondary structures with pseudoknots. Master’s thesis, Inst. f. Theoretische Chemie, University of Vienna, 1997. http://www.tbi.univie.ac.at/papers/Masters_theses.html.
  30. Heath, L. S., F. T. Leighton and A. L. Rosenberg (1992). Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discr. Math. 5, 398–412.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Hofacker, I. L., W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacke, and P. Schuster (1994). Fast folding and comparison of RNA econdary structures. Monath. Chem. 125, 167–188.CrossRefGoogle Scholar
  32. Hofacker, I. L., P. Schuster and P. F. Stadler (1999). Combinatorics of RNA secondary structures. Discr. Appl. Math. 89, 177–207.Google Scholar
  33. Hogeweg, P. and B. Hesper (1984). Energy directed folding of RNA sequences. Nucl. Acid. Res. 12, 67–74.Google Scholar
  34. Holton, D. A. and J. Sheehan (1993). The Petersen Graph, in Australian Mathematical Society Lecture Series 7, Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  35. Hsieh, W. N. (1973). Proportions of irreducible diagrams. Studies in Appl. Math. 52, 277–283.zbMATHMathSciNetGoogle Scholar
  36. Huynen, M. A. (1996). Exploring phenotype space through neutral evolution. J. Mol. Evol. 43, 165–169.Google Scholar
  37. Huynen, M. A., P. F. Stadler and W. Fontana (1996). Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401.CrossRefGoogle Scholar
  38. Jacobson, H. and W. H. Stockmeyer (1950). Intramolecular reaction in polycondensations. J. Chem. Phys. 18, 1600–1606.CrossRefGoogle Scholar
  39. Kleitman, D. (1970). Proportions of irreducible diagrams. Studies in Appl. Math. 49, 297–299.zbMATHMathSciNetGoogle Scholar
  40. Konings, D. A. M. and R. R. Gutell (1995). A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. RNA 1, 559–574.Google Scholar
  41. Kuratowski, K. (1930). Sur le problème des courbes gauches en topologie, Fund. Math. 15, 271–283.zbMATHGoogle Scholar
  42. Leydold, J. and P. F. Stadler (1998). Minimal cycle bases of outerplanar graphs. Elec. J. Comb. 5, R16. See http://www.combinatorics.org.MathSciNetGoogle Scholar
  43. Loria, Andrew and T. Pan (1996). Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2, 551–563.Google Scholar
  44. Lovász, L. and A. Schrijver (1996). The Colin de Verdière number of linklessly embeddable graphs. preprint.Google Scholar
  45. Malitz, S. M. (1994a). Genus g graphs have pagenumber \(o(\sqrt g )\). J. Algorithms 17, 85–109.zbMATHMathSciNetCrossRefGoogle Scholar
  46. Malitz, S. M. (1994b). Graphs with e edges have pagenumber \(o(\sqrt E )\). J. Algorithms 17, 71–84.zbMATHMathSciNetCrossRefGoogle Scholar
  47. Mans, R., C. W. A. Pleij and L. Bosch. (1991). Transfer RNA-like structures: structure, function and evolutionary significance. Eur. J. Biochem. 201, 303–324.CrossRefGoogle Scholar
  48. Martinez, H. M. (1984). An RNA folding rule. Nucl. Acid. Res. 12, 323–335.Google Scholar
  49. Michel, F. and E. Westhof (1990). Modelling of the three-dimmensional architecture of group I catalytic introns based on comparative sequence anaysis. J. Mol. Biol. 216, 585–610.CrossRefGoogle Scholar
  50. Obrenić, Bojana. (1993). Embedding De Bruijn graphs and shuffle-exchange graphs in five pages. SIAM J. Discr. Math. 6, 642–654.CrossRefzbMATHGoogle Scholar
  51. Penner, R. C. and M. S. Waterman (1993). Spaces of RNA secondary structures. Adv. Math. 101, 31–49.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Pleij, C. W., K. Rietveld and L. Bosch (1985). A new principle of RNA folding based on pseudoknotting. Nucl. Acid. Res. 13, 1717–1731.Google Scholar
  53. Reidys, C. M. (1997). Random induced subgraphs of generalized n-cubes. Adv. Appl. Math. 19, 360–377.zbMATHMathSciNetCrossRefGoogle Scholar
  54. Reidys, C. and P. F. Stadler (1996). Bio-molecular shapes and algebraic structures. Comp. & Chem. 20, 85–94.CrossRefGoogle Scholar
  55. Reidys, C., P. F. Stadler and P. Schuster (1996). Generic properties of combinatory maps: Neural networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397.CrossRefGoogle Scholar
  56. Robertson, N., P. Seymore and R. Thomas (1995a). Petersen family minors. J. Comb. Theory B64, 155–184.Google Scholar
  57. Robertson, N., P. Seymore and R. Thomas (1995b). Sachs’ linkless embedding conjecture. J. Comb. Theory B64, 185–227.Google Scholar
  58. Saenger, W. (1984). Principles of Nucleic Acid Structure, London: Springer Verlag.Google Scholar
  59. Schmitt, W. R. and M. S. Waterman (1994). Linear trees and RNA secondary structure. Discr. Appl. Math. 12, 412–427.Google Scholar
  60. Schuster, P. (1995). How to search for RNA structures. Theoretical concepts in evolutionary biotechnology. J. Biotechnol. 41, 239–257.CrossRefGoogle Scholar
  61. Schuster, P., W. Fontana, P. F. Stadler and I. L. Hofacker (1994). From sequences to shapes and back: A case study in RNA secondary structures. Proc. R. Soc. B255, 279–284.Google Scholar
  62. Shapiro, B. A. and K. Zhang (1990). Comparing multiple RNA secondary structures using tree comparisons. CABIOS 6, 309–318.Google Scholar
  63. Singh, R. K., A. Tropsha and I. I. Vaisman (1996). Delaunay tessellation of proteins: Four body nearest neighbor propensities of amino acid residues. J. Comput. Biol. 3, 213–221.CrossRefGoogle Scholar
  64. Söler, F. and K. Jankowski (1991). Modeling RNA secondary structures I. Mathematical structural model of predicting RNA secondary structures. Math. Biosc. 105, 167–190.CrossRefzbMATHGoogle Scholar
  65. Stein, P. R. (1978). On a class of linked diagrams, I. Enumeration. J. Comb. Theory A24, 357–366.CrossRefGoogle Scholar
  66. Stein, P. R. and C. J. Everett (1978). On a class of linked diagrams. II. Asymptotics. Disc. Math. 22, 309–318.MathSciNetCrossRefzbMATHGoogle Scholar
  67. Stein, P. R. and M. S. Waterman (1978). On some new sequences generalizing the Catalan and Motzkin numbers. Disc. Math. 26, 261–272.MathSciNetCrossRefGoogle Scholar
  68. Sysło, M. M. (1979). Characterizations of outerplanar graphs. Discr. Math. 26, 47–53.CrossRefzbMATHGoogle Scholar
  69. Tacker, Manfred, W. Fontana, P. F. Stadler and P. Schuster (1994). Statistics of RNA melting kinetics. Eur. Biophys. J. 23, 29–38.CrossRefGoogle Scholar
  70. Tacker, M., P. F. Stadler, E. G. Bornberg-Bauer, I. L. Hofacker and P. Schuster. Algorithm independent properties of RNA structure prediction. Eur. Biophy. J. 25, 115–130.Google Scholar
  71. Tang, C. K. and D. E. Draper (1989). An unusual mRNA pseudoknot structure is recognized by a protein translation repressor. Cell 57, 531–536.CrossRefGoogle Scholar
  72. Tang, C. K. and D. E. Draper (1990). Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationally regulated mRNA. Biochemistry 29, 4434–4439.CrossRefGoogle Scholar
  73. Ten Dam, E., I. Brierly, S. Inglis and C. Pleij (1994). Identification and analysis od the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucl. Acids Res. 22, 2304–2310.Google Scholar
  74. Ten Dam, E. B., C. W. A. Pleij and L. Bosch (1990). RNA pseudoknots and translational frameshifting on retroviral, coronaviral and luteoviral RNAs. Virus Genes 4, 121–136.CrossRefGoogle Scholar
  75. Touchard, J. (1952). Sur une problème de configurations et sur les fractions continues. Canad. J. Math. 4, 2–25.zbMATHMathSciNetGoogle Scholar
  76. Tzeng, T. H., C. L. Tu and J. A. Bruenn (1992). Ribosomal frameshifting requires a pseudoknot in the saccharomyces cerevisiae double-stranded RNA virus. J. Virology 66, 999–1006.Google Scholar
  77. de Verdière, Y. C. (1990). Sur un novel invariant des graphes et un critère de planarité. J. Comb. Theory B50, 11–21.Google Scholar
  78. Vlassov, V. V., G. Zuber, B. Felden, J. P. Behr and R. Griege (1995). Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structures. Nucl. Acid. Res. 23, 3161–3167.Google Scholar
  79. Wagner, K. and R. Bodendiek (1990). Graphentheorie II, Mannheim: B.I. Verlag.Google Scholar
  80. Walter, A. E., D. H. Turner, J. Kim, M. H. Lyttle, P. Müller, D. H. Mathews and M. Zuker (1994). Co-axial stacking of helixes enhances binding of oligoribonucleotides and improves predicions of RNA folding. Proc. Natl. Acad. Sci. USA 91, 9218–9222.CrossRefGoogle Scholar
  81. Waterman, M. S. (1978). Secondary structure of single-stranded nucleic acids. Adv. Math. Suppl. Stud. 1, 167–212.zbMATHMathSciNetGoogle Scholar
  82. Waterman, M. S. (1995). Introduction to Computational Biology: Maps, Sequences, and Genomes, London: Chapman and Hall.zbMATHGoogle Scholar
  83. Waterman, M. S. and T. F. Smith (1978a). Combinatorics of RNA hairpins and cloverleaves. Studies Appl. Math. 60, 91–96.Google Scholar
  84. Waterman, M. S. and T. F. Smith (1978b). RNA secondary structure: a complete mathematical analysis. Math. Biosc. 42, 257–266.CrossRefzbMATHGoogle Scholar
  85. Weber, J. (1997). Dynamics on Neutral Evolution. PhD thesis, Friedrich Schiller University, Jena, January 1997. http://www.tbi.univie.ac.at/papers/PhD_theses.html.
  86. Westhof, E. and L. Jaeger (1992). RNA pseudoknots. Current Opinion Struct. Biol. 2, 327–333.CrossRefGoogle Scholar
  87. Wilf, H. S. (1994). Generating functionology, San Diego, CA: Academic Press.Google Scholar
  88. Wills, N., R. F. Gesteland and J. F. Atkins (1991). Evidence that a downstream pseudoknot is required for translational readthrough of the moloney murine leukemia virus gag stop codon. Proc. Natl. Acad. Sci. USA 88, 6991–6995.CrossRefGoogle Scholar
  89. Wyatt, J. R., J. D. Puglisi and I. T. Tinoco (1990). RNA pseudoknots stability and loop size requirements. J. Mol. Biol 214, 455–470.CrossRefGoogle Scholar
  90. Yannakakis, M. (1988). Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38, 36–67.MathSciNetCrossRefGoogle Scholar
  91. Zipf, G. K. (1949). Human Behaviour and the Principle of Least Effort, Reading, MA: Addison-Wesley.Google Scholar
  92. Zuker, M. and D. Sankoff (1984). RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621.CrossRefzbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 1999

Authors and Affiliations

  1. 1.Institut für Theoretische ChemieUniversität WienWienAustria
  2. 2.The Sante Fe InstituteSante FeUSA

Personalised recommendations