Medial surfaces of hyperbolic structures

  • G. E. Schröder
  • S. J. Ramsden
  • A. G. Christy
  • S. T. Hyde
Article

Abstract.

We describe an algorithm for numerical computation of a medial surface and an associated medial graph for three-dimensional shapes bounded by oriented triangulated surface manifolds in three-dimensional Euclidean space (domains). We apply the construction to bicontinuous domain shapes found in molecular self-assemblies, the cubic infinite periodic minimal surfaces of genus three: Gyroid (G), Diamond (D) and Primitive (P) surfaces. The medial surface is the locus of centers of maximal spheres, i.e. spheres wholly contained within the domains which graze the surface tangentially and are not contained in any other such sphere. The construction of a medial surface is a natural generalization of Voronoi diagrams to continuous surfaces. The medial surface provides an explicit construction of the volume element associated with a patch of the bounding surface, leading to a robust measure of the surface to volume ratio for complex forms. It also allows for sensible definition of a line graph (the medial graph), particularly useful for domains consisting of connected channels, and not reliant on symmetries of the domains. In addition, the medial surface construction produces a length associated with any point on the surface. Variations of this length give a useful measure of global homogeneity of topologically complex morphologies. Comparison of medial surfaces for the P, D and G surfaces reveal the Gyroid to be the most globally homogeneous of these cubic bicontinuous forms (of genus three). This result is compared with the ubiquity of the G surface morphology in soft mesophases, including lyotropic liquid crystals and block copolymers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Amenta, M.W. Bern, Surface reconstruction by Voronoi filtering, in Symposium on Computational Geometry, pp. 39-48 (1998)Google Scholar
  2. 2.
    N. Amenta, S. Choi, R. Kolluri, Comput. Geometry: Theory and Applications, 127, 19 (2001)Google Scholar
  3. 3.
    D.M. Anderson, S.M. Gruner, S. Leibler, Proc. Natl. Acad. Sci. USA 85, 5364 (1988)Google Scholar
  4. 4.
    C.H. Arns, The influence of morphology on physical properties of reservoir rocks, Ph.D. thesis, University of New South Wales, Australia, 2002Google Scholar
  5. 5.
    D. Attali, A. Montanvert, Computer Vision and Image Understanding 67, 261 (1997)CrossRefGoogle Scholar
  6. 6.
    F. Aurenhammer, Computing Surveys 23, 345 (1991)CrossRefGoogle Scholar
  7. 7.
    R.F.W. Bader, Atoms in Molecules: a Quantum Theory, Number 22 in “The International series of monographs on chemistry” 1st edn. (Oxford University Press, New York, 1990)Google Scholar
  8. 8.
    S. Bakke, P.-E. Øren, Soc. Petroleum Engineers J. 2, 136 (1997)Google Scholar
  9. 9.
    I. Bitter, A.E Kaufman, M. Sato, IEEE Trans. Visualization and Computer Graphics 7, 195 (2001)CrossRefGoogle Scholar
  10. 10.
    H. Blum, J. Theor. Biol. 38, 287 (1973)Google Scholar
  11. 11.
    J.-D. Boissonnat, F. Cazals, Natural coordinates of points on a surface, In Proceedings of the 16th Annual ACM Symposium on Computational Geometry, pp. 223-232, 2000Google Scholar
  12. 12.
    H.I. Choi, S.W. Choi, H.P. Moon, Pacific J. Mathematics 181, 57 (1997)MathSciNetMATHGoogle Scholar
  13. 13.
    S.W. Choi, S.-W. Lee, Stability analysis of the medial axis transform, in Proc. 15th International Conference on Pattern Recognition (Barcelona, Spain), Vol. 3, pp. 139-142, 2000Google Scholar
  14. 14.
    S.W. Choi, H.-P. Seidel, Hyperbolic Hausdorff distance for medial axis transform. MPI-I-2000-4-003, Research Report Max-Planck-Institut für Informatik, September 2000Google Scholar
  15. 15.
    K.L. Clarkson, K. Mehlhorn, R. Seidel, Comput. Geometry: Theory and Applications 3, 185 (1993)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    T. Culver, J. Keyser, D. Manocha, Accurate computation of the medial axis of a polyhedron, Technical Report TR98-038, UNC, 1999Google Scholar
  17. 17.
    T.K. Dey, W. Zhao, Approximate medial axis as a voronoi subcomplex, in Proceedings of the seventh ACM symposium on Solid modeling and applications (ACM Press, 2002), pp. 356-366Google Scholar
  18. 18.
    P.M. Duesing, R.H. Templer, J.M. Seddon, Langmuir 13, 351 (1997)CrossRefGoogle Scholar
  19. 19.
    W. Fischer, E. Koch, Acta Cryst. A 45, 726 (1989)CrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Fogden, S.T. Hyde, Acta Cryst. A 48, 442 (1992)CrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Fogden, S.T. Hyde, Acta Cryst. A 48, 575 (1992)CrossRefGoogle Scholar
  22. 22.
    A. Fogden, S.T. Hyde, Eur. Phys. J. B 7, 91 (1999)CrossRefGoogle Scholar
  23. 23.
    F. Fol-Leymarie, Three-Dimensional Shape Representation via Shock Flows. Ph.D. thesis, Brown University, 2002Google Scholar
  24. 24.
    S. Fortune, Voronoi diagrams and Delaunay triangulations, in Euclidean Geometry and Computers, 2nd edn., edited by D.A. Du, F.K.H. Wang (World Scientific Singapore, 1995), pp. 193-233Google Scholar
  25. 25.
    N. Gagvani, D. Silver, Parameter controlled skeletonization of three dimensional objects. Technical Report, Computer Aids For Industrial Productivity, 1997Google Scholar
  26. 26.
    P. Giblin, B.B. Kimia, Computer Vision and Pattern Recognition 1, 1566 (2000)Google Scholar
  27. 27.
    A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC Press, 1998)Google Scholar
  28. 28.
    K. Grosse-Braukmann, J. Colloid Inter. Sci. 187, 418 (1997)CrossRefGoogle Scholar
  29. 29.
    International Tables For Crystallography, 3rd and revised edn., edited by T. Hahn (Kluwer Academic Publishers, Dordrecht, 1992)Google Scholar
  30. 30.
    W. Helfrich, H. Rennschuh, J. Phys. Colloq. France 51, C7-189 (1990)Google Scholar
  31. 31.
    D. Hilbert, Über Flächen von konstanter Gausscher Krümmung, Trans. A.M.S. 2, 87-99 (1901)MATHGoogle Scholar
  32. 32.
    D. Hilbert, S. Cohn-Vossen, Geometry and the Imagination (Chelsea Publishing Company, New York, 1952)Google Scholar
  33. 33.
    D. Hoffman, J. Hoffman, M. Weber, The scientific graphics project, http://www.msri.org/publications/sgp/sgp/main.htmlGoogle Scholar
  34. 34.
    H. Hopf, Differential Geometry in the Large, Vol. 1000 of Lecture Notes in Mathematics. 2nd edn. (Springer-Verlag, 1989)Google Scholar
  35. 35.
    S.T. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, B.W. Ninham, The Language of Shape (Elsevier Science B.V., Amsterdam, 1997)Google Scholar
  36. 36.
    S.T. Hyde, Curr. Opin. Solid State Mater. Sci. 1, 653 (1996)CrossRefGoogle Scholar
  37. 37.
    S.T Hyde, J. Phys. Chem. 93, 1458 (1989)Google Scholar
  38. 38.
    S.T. Hyde, Curvature and the global structure of interfaces in surfactant-water systems, J. Phys. Colloq. France 51, C7 (1990)Google Scholar
  39. 39.
    S.T. Hyde, Zeitschrift für Kristallographie 187, 165 (1990)MATHGoogle Scholar
  40. 40.
    S.T. Hyde, S. Andersson, Zeitschrift für Kristallographie 168, 221 (1984)MathSciNetMATHGoogle Scholar
  41. 41.
    M. Kleman, O.D. Lavrentovich, Soft Matter Physics: an Introduction (Springer-Verlag, 2003)Google Scholar
  42. 42.
    Ta-Chih Lee, R.L Kashyap, Chong-Nam Chu, CVGIP: Graphical Models Image Processing 56, 462 (1994)Google Scholar
  43. 43.
    W. Brent Lindquist, Sang-Moon Lee, D.A. Coker, K.W. Jones, P. Spanne, J. Geophy. Res. 101, 8297 (1996)Google Scholar
  44. 44.
    L. Kelvin, On homogeneous divison of space, Proceedings of the Royal Society, LV:1-17, 1894Google Scholar
  45. 45.
    V. Luchnikov, N.N. Medvedev, L. Oger, J.P. Troadec, Phys. Rev. E 6, 7205 (1999)CrossRefGoogle Scholar
  46. 46.
    V. Luzzati, H. Delacroix, A. Gulik, T. Gulik-Krzywicki, P. Mariani, R. Vargas, The cubic phases of lipid systems. physico-chemical properties and biological implications, Current Topics in Membranes, Vol. 44, edited by R.M. Epand (Academic Press, 1997), pp. 3-24Google Scholar
  47. 47.
    K.R. Mecke, Phys. Rev. E 53, 4794 (1996)CrossRefGoogle Scholar
  48. 48.
    K.R. Mecke, Additivity, convexity, and beyond: Applica-tions of Minkowski functionals in statistical physics in Statistical Physics and Spatial Statistics - The Art of Analyzing and Modeling Spatial Structures and Patterns, Vol. 554 of Lecture Notes in Physics, edited by K.R. Mecke, D. Stoyan (Springer Verlag, 2000), pp. 111-184Google Scholar
  49. 49.
    N.N. Medvedev, Dokl. Akad. Nauk. 337, 767 (1994)Google Scholar
  50. 50.
    D.J. Mitchell, B.W. Ninham, J. Chem. Soc. Faraday Trans. II 77, 601 (1981)Google Scholar
  51. 51.
    E. Muecke, Int. J. Comput. Geometry Appl. 8, 255 (1998)CrossRefMATHGoogle Scholar
  52. 52.
    L.R. Nackman, Comput. Graphics Image Processing 20, 43 (1982)MATHGoogle Scholar
  53. 53.
    L.R. Nackman, S.M. Pizer, IEEE Trans. Pattern Analysis and Machine Intelligence 7, 187 (1985)Google Scholar
  54. 54.
    J.C.C. Nitsche, Vorlesungen über Minimalflächen (Springer-Verlag, Berlin, Heidelberg, New York, 1975)Google Scholar
  55. 55.
    A. Okabe, B. Boots, K. Sugihara, Sung Nok Chiu, M. Okabe, Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, 2nd edn. (John Wiley and Sons, 2000)Google Scholar
  56. 56.
    P.D. Olmsted, M.S.T. Milner, Macromolecules 31, 4011 (1998)CrossRefGoogle Scholar
  57. 57.
    F.P. Preparata, M.I. Shamos, Computational Geometry (Springer-Verlag, 1985)Google Scholar
  58. 58.
    E. Remy, E. Thiel, Pattern Recognition Lett. 23, 649 (2002)CrossRefMATHGoogle Scholar
  59. 59.
    A.H. Schoen, Infinite periodic minimal surfaces without self-intersections. Technical report, NASA, 1970Google Scholar
  60. 60.
    U.S. Schwarz, G. Gompper, Phys. Rev. Lett. 85, 1472 (2000)CrossRefGoogle Scholar
  61. 61.
    U.S. Schwarz, G. Gompper, Langmuir 17, 2084 (2001)CrossRefGoogle Scholar
  62. 62.
    D. Shaked, A.M. Bruckstein, Computer Vision and Image Understanding 69, 156 (1998)CrossRefGoogle Scholar
  63. 63.
    D. Sheehy, C. Armstrong, D. Robinson, IEEE Trans. Visualization and Computer Graphics 2, 61 (1996)Google Scholar
  64. 64.
    J.R. Shewchuk, Discrete and Computational Geometry 18, 305 (1997)MathSciNetMATHGoogle Scholar
  65. 65.
    R.M. Sok, M.A. Knackstedt, A.P. Sheppard, W.V. Pinczewski, W.B. Lindquist, A. Venkatarangan, L. Paterson, Transport in Porous Media 46, 345 (2002)CrossRefGoogle Scholar
  66. 66.
    E.H. Spanier, Algebraic topology (McGraw-Hill, 1966)Google Scholar
  67. 67.
    M.A. Spivak, Comprehensive Introduction to Differential Geometry, Vol. III (Wilmington, DE: Publish or Perish Press, 1979)Google Scholar
  68. 68.
    T. Tasdizen, R. Whitaker, P. Burchard, S. Osher, Geometric surface smoothing via anisotropic diffusion of normals, in Proceedings of the conference Visualization ‘02 (IEEE Press, 2002), pp. 125-132Google Scholar
  69. 69.
    G. Taubin, Curve and surface smoothing without shrinkage, in Proc. IEEE Int. Conf. Comput. Vision, pp. 852-857, 1995Google Scholar
  70. 70.
    W. Thomson, Acta mathematica 1, 121 (1888)MATHGoogle Scholar
  71. 71.
    D.C. Turner, Z.-G. Wang, S.M. Gruner, D.A. Mannock, R.N. McElhaney, J. Phys. II France 2, 2039 (1992)CrossRefGoogle Scholar
  72. 72.
    F.-E. Wolter, Cut locus and medial axis in global shape interrogation and representation. MIT design laboratory memorandum 92-2, MIT, 1992Google Scholar
  73. 73.
    Y. Zhou, A.W. Toga, IEEE Trans. on Visualization and Computer Graphics 5, 196 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • G. E. Schröder
    • 1
  • S. J. Ramsden
    • 1
    • 2
  • A. G. Christy
    • 1
    • 3
  • S. T. Hyde
    • 1
  1. 1.Dept. of Applied Maths, Research School of Physical SciencesAustralian National UniversityCanberraAustralia
  2. 2.Supercomputer FacilityAustralian National UniversityCanberraAustralia
  3. 3.Geology DepartmentAustralian National UniversityCanberraAustralia

Personalised recommendations