Skip to main content
Log in

Interlayer Trions in 2D Transition-Metal Dichalcogenide Heterostructures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A dimensionally confined dielectric constant and reduced dielectric screening lead to two-dimensional transition-metal dichalcogenides (TMDs). The confined dielectric constant triggers a strong Coulomb interaction and high exciton binding energies between TMD heterostructures. Here we show a highly efficient interlayer charged exciton or trion formation and its generation sites are present in materials at room temperature. Two different transition metals (Mo, W) and chalcogenide (S, Se) elements were investigated in two different heterostructure combinations (MoS2—WS2 and MoSe2—WS2). Room temperature photoluminescence measurements demonstrate a highly efficient trion formation between and close to the heterostructure interfaces. This study highlights an effective band alignment, strong photoexciting Coulomb interaction, and formation of interlayer trions with different recombination energies. This investigation suggests the possibility of utilizing interlayer trions in promising optoelectronic devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Rasmussen and K. S. Thygesen, J. Phys. Chem. C 119, 13169 (2015).

    Article  Google Scholar 

  2. R. Roldán et al., Ann. Phys. 526, 347 (2014).

    Article  Google Scholar 

  3. J. Gusakova et al., Phys. Status Solidi A 214, 1700218 (2017).

    Article  ADS  Google Scholar 

  4. K. Matsuda, J. Phys. Soc. Jpn. 84, 121009 (2015).

    Article  ADS  Google Scholar 

  5. M. Bernardi, C. Ataca, M. Palummo and J. C. Grossman, Nanophotonics 6, 479 (2016).

    Article  Google Scholar 

  6. K. F. Mak and J. Shan, Nat. Photonics 10, 216 (2016).

    Article  ADS  Google Scholar 

  7. H-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 88, 085318 (2013).

    Article  ADS  Google Scholar 

  8. B. Amin, N. Singh and U. Schwingenschlögl, Phys. Rev. B 92, 075439 (2015).

    Article  ADS  Google Scholar 

  9. M. Z. Bellus, F. Ceballos, H-Y. Chiu and H. Zhao, ACS Nano 9, 6459 (2015).

    Article  Google Scholar 

  10. C. Choi et al., NPJ 2D Mater. Appl. 2, 1 (2018).

    Article  Google Scholar 

  11. S. Kallatt, S. Das, S. Chatterjee and K. Majumdar, NPJ 2D Mater. Appl. 3, 1 (2019).

    Article  Google Scholar 

  12. Y. Huang et al., ACS Nano 9, 10612 (2015).

    Article  Google Scholar 

  13. R. Frisenda et al., Chem. Soc. Rev. 47, 53 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute for Basic Science of Korea (IBS-R011-D1) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1A02046206). The authors acknowledge Prof. Young Hee Lee for his support for the successful completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, C., Sebait, R. Interlayer Trions in 2D Transition-Metal Dichalcogenide Heterostructures. J. Korean Phys. Soc. 77, 850–852 (2020). https://doi.org/10.3938/jkps.77.850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.850

Keywords

Navigation