Skip to main content
Log in

Gate-Modulated Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbon

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Topological insulator nanoribbons (TI NRs) provide a useful platform to explore the phase-coherent quantum electronic transport of topological surface states, which is crucial for the development of topological quantum devices. When applied with an axial magnetic field, the TI NR exhibits magnetoconductance (MC) oscillations with a flux period of h/e, i.e., Aharonov-Bohm (AB) oscillations, and h/2e, i.e., Altshuler-Aronov-Spivak (AAS) oscillations. Herein, we present an extensive study of the AB and AAS oscillations in Sb-doped Bi2Se3 TI NR as a function of the gate voltage, revealing phase-alternating topological AB oscillations. Moreover, the ensemble-averaged fast Fourier transform analysis on the Vg-dependent MC curves indicates the suppression of the quantum interference oscillation amplitudes near the Dirac point, which is attributed to the suppression of the phase coherence length within the low carrier density region. The weak antilo-calization analysis on the perpendicular MC curves confirms the idea of the suppressed coherence length near the Dirac point in the TI NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fu, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. J. H. Bardarson, P. W. Brouwer and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010).

    Article  ADS  Google Scholar 

  4. S. S. Hong et al., Nano Lett. 14, 2815 (2014).

    Article  ADS  Google Scholar 

  5. J. Manousakis et al., Phys. Rev. B 95, 165424 (2017).

    Article  ADS  Google Scholar 

  6. M. Kim et al., Nat. Commun. 10, 4522 (2019).

    Article  ADS  Google Scholar 

  7. N-H. Kim et al., Curr. Appl. Phys. 20, 680 (2020).

    Article  ADS  Google Scholar 

  8. C. H. Li et al., Nat. Nanotechnol. 9, 218 (2014).

    Article  ADS  Google Scholar 

  9. T-H. Hwang et al., Curr. Appl. Phys. 19, 917 (2019).

    Article  ADS  Google Scholar 

  10. L. A. Jauregui et al., Nat. Nanotechnol. 11, 345 (2016).

    Article  ADS  Google Scholar 

  11. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  12. H. Peng et al., Nat. Mater. 9, 225 (2010).

    Article  ADS  Google Scholar 

  13. S. Cho et al., Nat. Commun. 6, 7634 (2015).

    Article  ADS  Google Scholar 

  14. F. Xiu et al., Nat. Nanotechnol. 6, 216 (2011).

    Article  ADS  Google Scholar 

  15. H-S. Kim et al., Curr. Appl. Phys. 16, 51 (2016).

    Article  ADS  Google Scholar 

  16. M. Safdar et al., Nano Lett. 13, 5344 (2013).

    Article  ADS  Google Scholar 

  17. Y. C. Arango et al., Sci. Rep. 6, 29493 (2016).

    Article  ADS  Google Scholar 

  18. L-X. Wang, C-Z. Li, D-P. Yu and Z-M. Liao, Nat. Commun. 7, 10769 (2016).

    Article  ADS  Google Scholar 

  19. J. Kim et al., ACS Nano 10, 3936 (2016).

    Article  Google Scholar 

  20. H-S. Kim et al., arXiv:2008.08421 (2020).

  21. B. L. Al’Tshuler, A. G. Aronov and B. Z. Spivak, J. Exp. Theor. Phys. 33, 94 (1981).

    Google Scholar 

  22. J. Dufouleur et al., Phys. Rev. B 97, 075401 (2018).

    Article  Google Scholar 

  23. Y. Hou et al., Nat. Commun. 10, 5723 (2019).

    Article  ADS  Google Scholar 

  24. J-W. Chang et al., Appl. Phys. Express 6, 085201 (2013).

    Article  ADS  Google Scholar 

  25. J. Dufouleur et al., Phys. Rev. Lett. 110, 186806 (2013).

    Article  ADS  Google Scholar 

  26. M. Jung et al., Nano Lett. 8, 3189 (2008).

    Article  ADS  Google Scholar 

  27. C. P. Umbach et al., Phys. Rev. Lett. 56, 386 (1986).

    Article  ADS  Google Scholar 

  28. S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986).

    Article  ADS  Google Scholar 

  29. P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

    Article  ADS  Google Scholar 

  30. Y-J. Doh et al., J. Korean Phys. Soc. 54, 135 (2009).

    Article  ADS  Google Scholar 

  31. S. Hikami, A. I. Larkin and Y. Nagaoka, Prog. Theor. Exp. Phys. 63, 707 (1980).

    Article  ADS  Google Scholar 

  32. J. Chen et al., Phys. Rev. Lett. 105, 176602 (2010).

    Article  ADS  Google Scholar 

  33. J. Lee et al., Phys. Rev. B 86, 245321 (2012).

    Article  ADS  Google Scholar 

  34. J. J. Cha et al., Nano Lett. 12, 1107 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NRF of Korea through the Basic Science Research Program (2018R1A3B1052827) and the U.S. National Science Foundation (Grant DMR-1838532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Joo Doh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, TH., Kim, HS., Hou, Y. et al. Gate-Modulated Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbon. J. Korean Phys. Soc. 77, 797–801 (2020). https://doi.org/10.3938/jkps.77.797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.797

Keywords

Navigation