Skip to main content
Log in

Pulse Formation and Stability of a SESAM Mode-locked Laser Depending on the SESAM Position

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By using split-step Fourier method, we conducted the simulation of pulse formation in two SESAM mode-locked lasers. One is a conventional laser with the SESAM at the cavity end. The other is constructed by moving the SESAM of the conventional laser to the middle of the cavity. In the laser with the SESAM in the middle of the cavity, since the pulse meets the SESAM twice during one round-trip, the pulse shaping also occurs twice by the saturable absorption induced at the SESAM. For this reason, in net positive dispersion regime, the chirped-pulse propagating in the laser with the SESAM in the middle of the cavity was shorter than the chirped-pulse that experiences the pulse shaping per one round-trip by the SESAM in the conventional laser. In the operation regime of net negative dispersion, the soliton-like pulse shaping is a more dominant process in pulse shortening than the pulse shaping by the SESAM, therefore, there was no big difference between the steady-state pulse profiles of both lasers regardless of the SESAM position. However, it was found that the pulse contrast is better and the initial pulse changes to a steady-state pulse faster when the SESAM is in the middle of the cavity than at the cavity end. Since the enhanced cavity loss by the SESAM in the middle of the cavity suppresses pulse destabilization more effectively, it is demonstrated that the pulse stability against cw generation is better in the laser with the SESAM in the middle of the cavity than at the cavity end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Matos et al., Opt. Lett. 29, 1683 (2004).

    Article  ADS  Google Scholar 

  2. K. Sugioka and Y. Cheng, Light Sci. Appl. 3, e149 (2014).

    Article  ADS  Google Scholar 

  3. Y. Liu et al., Opt. Express 15, 18103 (2007).

    Article  ADS  Google Scholar 

  4. S. Yefet and A. Pe’er, Appl. Sci. 3, 694 (2013).

    Article  Google Scholar 

  5. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).

    Article  ADS  Google Scholar 

  6. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).

    Article  ADS  Google Scholar 

  7. D.H. Song et al., Laser Phys. Lett. 10, 065003 (2013).

    Article  ADS  Google Scholar 

  8. T. Brabec, C. Spielmann, P. F. Curley and F. Krausz, Opt. Lett. 17, 1292 (1992).

    Article  ADS  Google Scholar 

  9. J. Herrmann, Opt. Commun. 98, 111 (1993).

    Article  ADS  Google Scholar 

  10. H. A. Haus, J. G. Fujimoto and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).

    Article  ADS  Google Scholar 

  11. U. Keller et al., IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).

    Article  ADS  Google Scholar 

  12. E. Sorokin, N. Tolstik, K. I. Schaffers and I. T. Sorokina, Opt. Express 20, 28947 (2012).

    Article  ADS  Google Scholar 

  13. D. H. Sutter et al., Appl. Phys. B 70, S5 (2000).

    Article  ADS  Google Scholar 

  14. R. L. Fork, E. Martinez and J. P. Gordon, Opt. Lett. 9, 150 (1984).

    Article  ADS  Google Scholar 

  15. S. Naumov et al., New J. Phys. 7, 216 (2005).

    Article  ADS  Google Scholar 

  16. J. Ma et al., Opt. Express 25, 14968 (2017).

    Article  ADS  Google Scholar 

  17. S. Dewald et al., Opt. Lett. 31, 2072 (2006).

    Article  ADS  Google Scholar 

  18. P. Dombi et al., Opt. Express 17, 20598 (2009).

    Article  ADS  Google Scholar 

  19. S-H. Kwon, D. H. Song, I. S. Kim and D-K. Ko, Opt. Laser Technol. 133, 106560 (2021).

    Article  Google Scholar 

  20. M. Gong, H. Yu, X. Wushouer and P. Yan, Laser Phys. Lett. 5, 514 (2008).

    Article  ADS  Google Scholar 

  21. A. Laurain et al., Proc. SPIE 10515, 105150H (2018).

    Google Scholar 

  22. O. Shtyrina et al., J. Opt. Soc. Am. B 26, 346 (2009).

    Article  ADS  Google Scholar 

  23. C. Brandus and T. Dascalu, Opt. Laser Technol. 111, 452 (2019).

    Article  ADS  Google Scholar 

  24. V. L. Kalashnikov et al., New J. Phys. 7, 217 (2005).

    Article  ADS  Google Scholar 

  25. Y. H. Cha, J. M. Han and Y. J. Rhee, Appl. Phys. B 74, S283 (2002).

    Article  ADS  Google Scholar 

  26. M. Tokurakawa and A. Shirakawa, Opt. Express 23, 26288 (2015).

    Article  ADS  Google Scholar 

  27. D. H. Song, S. I. Hwang and D-K. Ko, J. Korean Phys. Soc. 61, 730 (2012).

    Article  ADS  Google Scholar 

  28. R. Paschotta et al., Appl. Phys. B 73, 653 (2001).

    Article  ADS  Google Scholar 

  29. F. X. Kärtner, J. A. der Au and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).

    Article  ADS  Google Scholar 

  30. F. X. Kaärtner, I. D. Jung and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).

    Article  ADS  Google Scholar 

  31. C. Spielmann, P. F. Curley, T. Brabec and F. Krausz, IEEE J. Sel. Top. Quantum Electron. 30, 1100 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) (Grant No. NRF-2015R1A5A1009962).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Kyeong Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, SH., Ko, DK. Pulse Formation and Stability of a SESAM Mode-locked Laser Depending on the SESAM Position. J. Korean Phys. Soc. 77, 1153–1158 (2020). https://doi.org/10.3938/jkps.77.1153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.1153

Keywords

Navigation