Skip to main content
Log in

Low Energy Electron Beam Activated IGZO-based Thin Film Transistor

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The effect of electron beam irradiation (EBI) on Indium-Gallium-Zinc-oxide (IGZO)-based thin film transistor (TFT) is investigated. The TFT is formed to bottom gate structure on highly doped Si wafer for evaluating EBI effect. Before EBI treatment on IGZO based TFT, the electron density of EBI is measured by cut off probe. At an RF power of 150 W, the electron density varies from 4.04 × 108 to 1.59 × 109 cm−3 with EBI DC voltage from 50 to 1500 V. The TFT is treated by various kinds of EBI DC voltages with induced time from 0 to 180 s in a gas ambient (Ar/O2 = 10/0.3 sccm) at 100 °C. The maximum field-effect mobility (μEF)isabout 18 cm2/V-sec which is obtained as the sample annealed after EBI treatment. In addition, EBI treatment creates amorphous states into the IGZO channel which is interactively found by high resolution transmission-electron-microscopy characteristics. EBI treatment is applied to the bottom gate of IGZO based TFT on poly-imide (PI) film. After channel activation, the μEF is increased from 3.9 to 27.2 cm2/V-sec. From this study, it is anticipated that EBI will be a promising annealing method for fabricating flexible IGZO-based TFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Huitema et al., 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC (San Francisco, CA, USA, Feb. 13, 2003).

  2. J. H. Lee et al., IEEE Electron Device Lett. 27, 27 (2006).

    Google Scholar 

  3. S. Yamazaki et al., ECS J. Solid State Sci. Technol. 3, Q3012 (2014).

    Article  Google Scholar 

  4. D. C. Paine, B. Yaglioglu, Z. Beiley and S. Lee, Thin Solid Films 516, 516 (2008).

    Article  Google Scholar 

  5. G. Goncalves et al., Thin Solid Films 516, 516 (2008).

    Google Scholar 

  6. N. L. Dehuff et al., J.Appl.Phys. 97, 064505 (2005).

    Article  ADS  Google Scholar 

  7. J. I. Song et al., Appl. Phys. Lett. 90, 90 (2007).

    Google Scholar 

  8. Y. W. Heo et al., Appl. Phys. Lett. 83, 83 (2003).

    Article  ADS  Google Scholar 

  9. H. Q. Chiang et al., Appl. Phys. Lett. 86, 86 (2005).

    Article  Google Scholar 

  10. Y. J. Chang, D. H. Lee, G. S. Herman and C. H. Chang, Electrochem. Solid-State Lett. 10, 10 (2007).

    Article  Google Scholar 

  11. Y. Shigesato and D.C. Paine, Appl. Phys. Lett. 62, 62 (1993).

    Article  Google Scholar 

  12. C-J. Kim et al., Appl. Phys. Lett. 95, 95 (2009).

    Google Scholar 

  13. E. Chong, K. C. Jo and S. Y. Lee, Appl. Phys. Lett. 96, 96 (2010).

    Article  Google Scholar 

  14. J. K. Jeong et al., Appl.Phys. Lett. 93, 123508 (2008).

    Article  ADS  Google Scholar 

  15. D. Kang et al., Appl. Phys. Lett. 90, 90 (2007).

    Google Scholar 

  16. X. Ding et al., Superlattices Microstruct. 63, 70 (2013)

    Article  ADS  Google Scholar 

  17. P. Barquinha et al., IEEE Trans. Electron Devices 55, 55 (2008).

    Article  Google Scholar 

  18. I. Song et al., IEEE Trans. Electron Devices 29, 29 (2008).

    Google Scholar 

  19. M. Kimura et al., Appl. Phys. Lett. 92, 92 (2008).

    Google Scholar 

  20. Y. H. Hwang, J. H. Jeon, S. J. Seo and B. S. Bae, Electrochem. Solid-State Lett. 12, 12 (2009).

    Article  Google Scholar 

  21. Y. H. Hwang, J. H. Jeon and B. S Bae, Electrochem. Solid-State Lett. 14, 14 (2011).

    Article  Google Scholar 

  22. P. K. Nayak, J. S. Jang, C. H. Lee and Y. T. Hong, Appl. Phys. Lett. 95, 95 (2009).

    Article  Google Scholar 

  23. H. S. Kim, P. D. Byrne, A. Facchetti and T. J. Marks, J. Am. Chem. Soc. 130, 130 (2008).

    Google Scholar 

  24. R. E. Presley et al., J. Phys. D: Appl. Phys. 37, 37 (2004).

    Article  Google Scholar 

  25. S. Y. Sung et al., Appl. Phys. Lett. 97, 222109 (2010).

    Article  ADS  Google Scholar 

  26. S. Y. Kim et al., ACS Appl.Mater.Interfaces 5, 5 (2013).

    Google Scholar 

  27. Y. Wang, Z. Wang and C. Liu, 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) (Kyoto, Japan, July 2–5, 2019).

    Google Scholar 

  28. W. J. Park et al., Appl. Phys. Lett. 93, 93 (2008).

    Google Scholar 

  29. H. Li, M. Qu and Q. Zhang, IEEE Electron Device Lett. 34, 34 (2013).

    Google Scholar 

  30. K. M. Kim et al., IEEE Electron Device Lett. 32, 32 (2011).

    Google Scholar 

  31. K. Nomura et al., Nature 432, 488 (2004).

    Article  ADS  Google Scholar 

  32. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 24 (2012).

    Article  Google Scholar 

  33. J. H. Lim et al., Appl. Phys. Lett. 95, 95 (2009).

    Google Scholar 

  34. D. J. Kim et al., Appl. Phys. Lett. 95, 95 (2009).

    Google Scholar 

  35. G. H. Kim et al., Thin Solid Films 517, 517 (2009).

    Google Scholar 

  36. S. Yamazaki et al., ECS J. Solid State Sci. Technol. 3, Q3012 (2014).

    Article  Google Scholar 

  37. D. H. Kim and W. J. Cho, J. Korean Inst. Electr. Electron. Mater. Eng. 29, 29 (2016).

    Article  Google Scholar 

  38. W. P. Zhang, S. Chen, S. B. Qian and S. J. Ding, Semicond. Sci. Technol. 30, 30 (2015).

    Google Scholar 

  39. B. D. Ahn et al., Electrochem. Solid-State Lett. 12, 12 (2009).

    Article  Google Scholar 

  40. S. C. Jang et al., AIP Adv. 9, 9 (2019).

    Article  Google Scholar 

  41. K. H. Kim, H-I. Kwon, S. J. Kwon and E-S. Cho, J. Semicond. Technol. Sci. 19, 19 (2019).

    Google Scholar 

  42. H. J. Moon et al., J. Korean Phys. Soc. 60, 60 (2012).

    Google Scholar 

  43. K. S. Jeon et al., Curr. Appl. Phys. 14, 14 (2014).

    Google Scholar 

  44. S. H. Jeong and B. S. Bae, J. Korean Phys. Soc. 61, 61 (2012).

    Google Scholar 

  45. Y. Deng, C. Tan, X. Han and Y. Tan, Plasma Sci. Technol. 14, 14 (2012).

    Article  ADS  Google Scholar 

  46. K. Nomura et al., Jpn. J. Appl. Phys. 45, 45 (2006).

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea under Grants NRF-2014R1A6A1030419 and NRF-2018R1D1A3A03000779; and in part by the Industrial Strategic Technology Development Program (Grant No. 10079982) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Seop Kwak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.U., Cha, YJ., Byeon, M. et al. Low Energy Electron Beam Activated IGZO-based Thin Film Transistor. J. Korean Phys. Soc. 76, 715–721 (2020). https://doi.org/10.3938/jkps.76.715

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.715

Keywords

Navigation