Skip to main content
Log in

Topological Invariant Prediction via Deep Learning

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using a deep neural network model, we show that predicting an accurate topological invariant is possible from one-dimensional Hamiltonians, whose topological invariant is the winding number. Given a set of Hamiltonians in momentum space as the input, the deep neural network can predict the topological invariant with high accuracy. We found that, upon optimization of the weight parameters, the deep neural network can accurately predict the topological invariant, if the training data size is sufficiently large. This means that extracting actionable insights from massive amounts of data is possible in the present deep neural network model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Le Cun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).

    Article  ADS  Google Scholar 

  2. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, Cambridge, MA, USA, 2016).

    MATH  Google Scholar 

  3. D. Silver et al., Nature 529, 484 (2016).

    Article  ADS  Google Scholar 

  4. P. Baldi, P. Sadowski, and D. Whiteson, Nat. Commun. 5, 4308 (2014).

    Article  ADS  Google Scholar 

  5. S. Whiteson, and D. Whiteson, Eng. Appl. Artif. Intell. 22, 1203 (2009).

    Article  Google Scholar 

  6. N. M. Ball, and R. J. Brunner, Int. J. Mod. Phys. D 19, 1049 (2010).

    Article  ADS  Google Scholar 

  7. O. Y. Al- Jarrah et al., Big Data Res. 2, 87 (2015).

    Article  Google Scholar 

  8. S. Dieleman, K. W. Willett, and J. Dambre, Mon. Not. R. Astron. Soc. 450, 1441 (2015).

    Article  ADS  Google Scholar 

  9. Y. Zhang, and E-A. Kim, Phys. Rev. Lett. 118, 216401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  11. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  12. D. Vanderbilt, Berry Phases in Electronic Structure Theory (Cambridge University Press, Cambridge, UK, 2018).

    Book  Google Scholar 

  13. P. Zhang, H. Shen, and H. Zhai, Phys. Rev. Lett. 120, 066401 (2018).

    Article  ADS  Google Scholar 

  14. E. P. L. van Nieuwenburg, Y-H. Liu, and S. D. Huber, Nat. Phys. 13, 435 (2017).

    Article  Google Scholar 

  15. D. Carvalho, N. A. Carcía-Martinez, J. L. Lado, and J. Fernández-Rossier, Phys. Rev. B 97, 11543 (2018).

    Google Scholar 

  16. J. F. Rodriguez-Nieva and M. S. Scheurer, Nat. Phys. 15, 790 (2019).

    Article  Google Scholar 

  17. M. D. Caio et al., arXiv:1901.03346.

  18. N. Sun, J. Yi, P. Zhang, H. Shen, and H. Zhai, Phys. Rev. B 98, 085402 (2018).

    Article  ADS  Google Scholar 

  19. H. Araki, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. B 99, 085406 (2019).

    Article  ADS  Google Scholar 

  20. T. Xie, and J. C. Grossman, Phys. Rev. Lett. 120, 145301 (2018).

    Article  ADS  Google Scholar 

  21. A. Goy, K. Arthur, S. Li, and G. Barbastathis, Phys. Rev. Lett. 121, 243902 (2018).

    Article  ADS  Google Scholar 

  22. H. Yoon, J-H. Sim, and M. J. Han, Phys. Rev. B 98, 245101 (2018).

    Article  ADS  Google Scholar 

  23. R. Fournier, L. Wang, O. V. Yazyev, and Q. Wu, arXiv:1810.00913.

  24. L-F. Arsenault, R. Neuberg, L. A. Hannah, and A. Millis, Inverse Probl. 33, 115007 (2017).

    Article  ADS  Google Scholar 

  25. R. Rupp, A. Tkatchenko, K-R. Müller and O. A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012).

    Article  ADS  Google Scholar 

  26. J. C. Snyder et al., Phys. Rev. Lett. 108, 253002 (2012).

    Article  ADS  Google Scholar 

  27. G. Pilania et al., Sci. Rep. 3, 2810 (2013).

    Article  Google Scholar 

  28. B. Meredig et al., Phys. Rev. B 89, 094104 (2014).

    Article  ADS  Google Scholar 

  29. O. Isayev et al., Nat. Commun. 8, 15679 (2017).

    Article  ADS  Google Scholar 

  30. J. Nelson, R. Tiwari, and S. Sanvito, Phys. Rev. B 99, 075132 (2019).

    Article  ADS  Google Scholar 

  31. F. Chollet et al., 2015 Keras, https://github.com/keras-team/keras.

  32. M. Abadi et al., 2015 TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org.

    Google Scholar 

  33. A. Linn (25 October 2016). “Microsoft releases beta of Microsoft Cognitive Toolkit for deep learning advances.” microsoft.com. Microsoft. Retrieved 30 January 2017. “Title: Microsoft releases beta of Microsoft Cognitive To ol kit.”

    Google Scholar 

  34. Theano Development Team 2016 Theano: A Python framework for fast computation of mathematical expressions, arXiv:1605.02688.

Download references

Acknowledgments

The author thanks the Korea Institute for Advanced Study (KIAS Center for Advanced Computation) for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, IH. Topological Invariant Prediction via Deep Learning. J. Korean Phys. Soc. 76, 401–405 (2020). https://doi.org/10.3938/jkps.76.401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.401

Keywords

Navigation