Skip to main content
Log in

Electronic and Optical Properties of Staggered ZnO/ZnO1−xSx-ZnO1−ySy/ZnO Quantum Wells for Bluish-Green Light-Emitting Diodes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

A Correction to this article was published on 18 February 2020

A Correction to this article was published on 18 February 2020

This article has been updated

Abstract

The optical and electronic properties of staggered ZnO/ZnO1−xSx-ZnO1−ySy/ZnO (for x > y) bluish-green light-emitting diodes with quantum well (QW) structures are investigated using the multiband effective mass theory. The obtained results are compared with those of conventional ZnO1−xSx/ZnO QW structures, and the staggered QW structures are found to have a comparatively larger optical matrix, showing a substantial, yet gradual, reduction in the internal field effect. Thus, the staggered ZnO/ZnO1−xSx-ZnO1−ySy/ZnO QW structure design leads to a significantly higher spontaneous emission compared to that of conventional ZnO1−xSx/ZnO QW structures. This analysis indicates the potential of using a staggered QW structure for high-efficiency ZnO-based bluish-green LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 18 February 2020

    The present address of S. Kumar has been added.

  • 18 February 2020

    The present address of S. Kumar has been added.

References

  1. J. Shakya et al., Appl. Phys. Lett. 86, 091107 (2005).

    Article  ADS  Google Scholar 

  2. J. Li, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett. 88, 171909 (2006).

    Article  ADS  Google Scholar 

  3. Y. A. Chang et al., Jpn. J. Appl. Phys. Part 1 44, 7916 (2005).

    Article  Google Scholar 

  4. P. T. Barletta et al., Appl. Phys. Lett. 90, 151109 (2007).

    Article  ADS  Google Scholar 

  5. K. S. Kim et al., Appl. Phys. Lett. 96, 091104 (2010).

    Article  ADS  Google Scholar 

  6. S. Choi et al., Appl. Phys. Lett. 96, 221105 (2010).

    Article  ADS  Google Scholar 

  7. C. H. Kuo et al., IEEE Trans. Electron Devices 50, 535 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. K. Su et al., IEEE Electron Device Lett. 26, 891 (2005).

    Article  ADS  Google Scholar 

  9. C. F. Shen et al., IEEE Photonics Technol. Lett. 19, 780 (2007).

    Article  ADS  Google Scholar 

  10. T. Onuma et al., Appl. Phys. Lett. 91, 181903 (2007).

    Article  ADS  Google Scholar 

  11. C. E. Lee et al., IEEE Photonics Technol. Lett. 20, 184 (2008).

    Article  ADS  Google Scholar 

  12. F. Bernardini, Nitride Semiconductor Devices: Principles and Simulation, edited by J. Piprek (Wiley, New York, 2007).

  13. A. Thamm et al., Phys. Rev. B 61, 16025 (2000).

    Article  ADS  Google Scholar 

  14. A. E. Romanov, T. J. Baker, S. Nakamura and J. S. Speck, J. Appl. Phys. 100, 023522 (2006).

    Article  ADS  Google Scholar 

  15. P. Waltereit, O. Brandt and A. Trampert, Nature 406, 865 (2000).

    Article  ADS  Google Scholar 

  16. S. F. Chichibu et al., Appl. Phys. Lett. 73, 2006 (1998).

    Article  ADS  Google Scholar 

  17. V. Y. Davydov et al., Phys. Status Solidi 229, r1 (2002).

    Article  ADS  Google Scholar 

  18. S. L. Chuang and C. S. Chang, Phys. Rev. B 54, 2491 (1996).

    Article  ADS  Google Scholar 

  19. S. H. Park and S. L. Chuang, Appl. Phys. Lett. 72, 3103 (1998).

    Article  ADS  Google Scholar 

  20. D. Ahn, Prog. Quantum Electron. 21, 249 (1997).

    Article  ADS  Google Scholar 

  21. S. H. Park, S. L. Chuang, J. Minch and D. Ahn, Semicond. Sci. Technol. 15, 203 (2000).

    Article  ADS  Google Scholar 

  22. F. Bernardini and V. Fiorentini, Phys. Status Solidi B 216, 391 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Basic Science and Research Program supported this research through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2016R1D1A1B04935798, 2018 R1D1A1B07051095, 2018R1D1A1B07050237, 2016R1A6 A1A03012877, and 2018R1D1A1B07042028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magotra, V.K., Jeon, H.C., Kumar, S. et al. Electronic and Optical Properties of Staggered ZnO/ZnO1−xSx-ZnO1−ySy/ZnO Quantum Wells for Bluish-Green Light-Emitting Diodes. J. Korean Phys. Soc. 75, 899–902 (2019). https://doi.org/10.3938/jkps.75.899

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.899

Keywords

Navigation