Skip to main content
Log in

Detecting an Overlapping Community Structure by Using Clique-to-Clique Similarity based Label Propagation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Many researchers have proven that complex networks have community structures and that most network communities are overlapping. Numerous algorithms have been proposed and used to detect non-overlapping or overlapping communities in networks. Many community-detecting algorithms are based on a clique. A clique is a subset of the nodes in the network in which every pair of nodes has an edge between them. In this paper, we propose a new algorithm that is based on a clique-to-clique similarity measure, and the label propagation to detect overlapping communities. The algorithm first finds all cliques of the network; then, it builds a new network according to a specific strategy, that specifies that in the new network, a node represents a clique found in the last step, and an edge is the link relation generated according to the strategy. The experimental results for both synthetic networks and real-world networks show that the proposed algorithm is not only effective, but also better than other algorithms in forms of the quality of results on the time efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, London, 1994).

    MATH  Google Scholar 

  2. V. Spirin and L. A. Mirny, Proc. Natl. Acad. Sci. U.S.A. 100, 123 (2003).

    Google Scholar 

  3. B. Adamcsek et al., Bioinformatics 22, 1021 (2006).

    Google Scholar 

  4. M. Girvan and M. Newman, Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002).

    ADS  Google Scholar 

  5. G. Palla, I. Derényi, I. Farkas and T. Vicsek, Nature 435, 814 (2005).

    ADS  Google Scholar 

  6. M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).

    ADS  Google Scholar 

  7. H. Zhou, Phys. Rev. E 67, 061901 (2003).

    ADS  Google Scholar 

  8. S. Boccaletti et al., Phys. Rep. 424, 175 (2006).

    ADS  MathSciNet  Google Scholar 

  9. A. Clauset, M. E. J. Newman and C. Moore, Phys. Rev. E 70, 066111 (2004).

    ADS  Google Scholar 

  10. M. E. J. Newman, Phys. Rev. E 69, 066133 (2004).

    ADS  Google Scholar 

  11. S. Fortunato, Phys. Rep. 486, 75 (2010).

    ADS  MathSciNet  Google Scholar 

  12. Y. J. Yan, G. Yu, X. B. Yan and H. Xie, Mod. Phys. Lett. B 32, 1850405 (2018).

    ADS  Google Scholar 

  13. H. Shen, X. Cheng, K. Cai and M. B. Hu, Physica A 388, 1706 (2009).

    ADS  Google Scholar 

  14. S. Ming-Sheng, C. Duan Bing and Z. Tao, Chinese Phys. Lett. 27, 058901 (2010).

    ADS  Google Scholar 

  15. C. Lee, F. Reid, A. McDaid and N. Hurley, Tech. Rep. arXiv:1002.1827 (2010).

  16. A. Lancichinetti, S. Fortunato and J. Kertész, New J. Phys. 11, 033015 (2009).

    ADS  Google Scholar 

  17. J. Xie, S. Kelley and B. K. Szymanski, ACM Comput. Surv. 45, 43 (2013).

    Google Scholar 

  18. J. Leskovec, K. Lang, A. Dasgupta and M. Mahoney, Internet Math. 6, 29 (2009).

    MathSciNet  Google Scholar 

  19. U. N. Raghavan, R. Albert and S. Kumara, Phys. Rev. E 76, 036106 (2007).

    ADS  Google Scholar 

  20. Ian X. Y. Leung, P. Hui, P. Lio and J. Crowcroft, Phys. Rev. E 79, 066107 (2009).

    ADS  Google Scholar 

  21. C. Bron and J. Kerbosch, Commun. ACM 16, 575 (1973).

    Google Scholar 

  22. A. L. Traud, E. D. Kelsic, P. J. Mucha and M. A. Porter, Tech. Rep. arXiv: 0809.0690 (2008).

  23. A. Lancichinetti, S. Fortunato and F. Radicchi, Phys. Rev. E 78, 046110 (2008).

    ADS  Google Scholar 

  24. A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 016118 (2009).

    ADS  Google Scholar 

  25. A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 56117 (2009).

    ADS  Google Scholar 

  26. V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, J. Stat. Mech-Theory E 2009, 03024 (2009).

    Google Scholar 

  27. S. Gregory, New J. Phys. 12, 103018 (2010).

    ADS  Google Scholar 

  28. W. W. Zachary, J. Anthropol. Res. 4, 452 (1977).

    Google Scholar 

  29. D. Lusseau et al., Behav. Ecol. Sociobiol. 54, 396 (2003).

    Google Scholar 

  30. J. Leskovec, J. Kleinberg and C. Faloutsos, ACM Trans. KDD 1, 1 (2007).

    Google Scholar 

  31. J. Leskovec, J. Kleinberg and C. Faloutsos, ACM KDD 177, (2005).

  32. L. Hubert and P. Arabie, J. Classif. 2, 1 (1985).

    Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (71561013), the Jiangxi Provincial Natural Science Foundation (20161BAB2 02055), the Social Science Planning Projects in Jiangxi Province (16TQ05), the Fund of Humanities and Social Sciences in Universities of Jiangxi Province (XW1505, JC17221, JD18083), and the Outstanding Youth Talent Support Program of JXSTNU (2015QNBJRC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Yan, Y. Detecting an Overlapping Community Structure by Using Clique-to-Clique Similarity based Label Propagation. J. Korean Phys. Soc. 75, 436–442 (2019). https://doi.org/10.3938/jkps.75.436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.436

Keywords

Navigation