Skip to main content
Log in

Effect of Gd Doping on the Structural and Magnetic Properties of Ni-Cu-Zn-Fe2O4

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ni0.5Cu0.25Zn0.25GdxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) ferrites were synthesized using an oxalic-based precursor method. A single phase Ni-Cu-Zn-Gd ferrite was observed from X-ray diffraction (XRD) data except for higher Gd content. For x = 0.1, a secondary phase due GdFe2O3 was observed. The particle size was observed to decrease and the lattice constant to increase with increasing Gd doping concentration. The IR spectra confirmed the existence of bands corresponding to spinel ferrites. The IR band positions were observed to shift towards higher positions with increasing Gd doping concentration. The saturation magnetization, coercivity and remanence magnetization were observed to increase as a result of Gd doping. The substitution of Gd ions in the place of Fe ions resulted in changes in the structural and magnetic properties due to replacement of smaller ionic radii Fe ions by larger ionic radii Gd ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Dimri, C. S. Kashyap and D. C. Dube, Phys. Status Solidi A 207, 396 (2010).

    Article  ADS  Google Scholar 

  2. T. Nakamura, J. Magn. Magn. Mater. 168, 285 (1997).

    Article  ADS  Google Scholar 

  3. H. Harzali et al., J. Magn. Magn. Mater. 419, 50 (2016).

    Article  ADS  Google Scholar 

  4. M. M. Eltabey, K. M. El-Shokrofy and S. A. Gharbia, J. Alloys Compd. 509, 2473 (2011).

    Article  Google Scholar 

  5. M. Kaiser, J. Alloys Compd. 719, 446 (2017).

    Article  Google Scholar 

  6. M. H. Abdellatif, G. M. El-Komy and A. A. Azab, J. Magn. Magn. Mater. 442, 445 (2017).

    Article  ADS  Google Scholar 

  7. R. Hochschild and H. Fuess, J. Mater. Chem. 10, 539 (2000).

    Article  Google Scholar 

  8. L. Yang et al., J. Mater. Sci.: Mater. Electron. 26, 6848 (2015).

    Google Scholar 

  9. P. K. Roy and J. Bera, J. Magn. Magn. Mater. 321, 247 (2009).

    Article  ADS  Google Scholar 

  10. Y. He et al., Sci. Adv. Mater. 7, 1809 (2015).

    Article  Google Scholar 

  11. S. Suguna, S. Shankar, S. K. Jaganathan and A. Manikandan, J. Supercond. Nov. Magn. 30, 691 (2017).

    Article  Google Scholar 

  12. G. Padmapriya et al., J. Supercond. Nov. Magn. 29, 2141 (2016).

    Article  Google Scholar 

  13. L. Zhao et al., J. Magn. Magn. Mater. 309, 11 (2007).

    Article  ADS  Google Scholar 

  14. K. K. Bharathi, J. A. Chelvane and G. Markandeyulu. J. Magn. Magn. Mater. 31, 3677 (2009).

    Article  Google Scholar 

  15. K. K. Bharathi et al., Phys. Rev. B 77, 172401 (2008).

    Article  ADS  Google Scholar 

  16. O. M. Hemeda, M. Z. Said and M. M. Barakat, J. Magn. Magn. Mater. 224, 132 (2001).

    Article  ADS  Google Scholar 

  17. A. R. Buenoa, M. L. Gregori and M. C. S. N'obrega, Mater. Chem. Phys. 105, 229 (2007).

    Article  Google Scholar 

  18. A. T. Raghavender, S. E. Shirsath and K. V. Kumar, J. Alloys Compd. 509, 7004 (2011).

    Article  Google Scholar 

  19. D. G. Wickham, Inorg. Synth. 9, 152 (1967).

    Google Scholar 

  20. N. D. Chaudhari et al., Mater. Res. Bull. 45, 1713 (2010).

    Article  Google Scholar 

  21. M. T. Farid et al., J. Magn. Magn. Mater. 422, 337 (2017).

    Article  ADS  Google Scholar 

  22. H. Harzali et al., J. Magn. Magn. Mater. 460, 89 (2018).

    Article  ADS  Google Scholar 

  23. L. Kumar and M. Kar, Ceram. Int. 38, 4771 (2012).

    Article  Google Scholar 

  24. M. Yehia, S. M. Ismail and A. Hashhash, J. Supercond. Nov. Magn. 27, 771 (2014).

    Article  Google Scholar 

  25. S. Hafner, Z. Kristallogr. 115, 331 (1961).

    Article  Google Scholar 

  26. R. D. Waldron, Phys. Rev. 99, 1727 (1955).

    Article  ADS  Google Scholar 

  27. M. Desai et al., J. Magn. Magn. Mater. 231, 108 (2001).

    Article  ADS  Google Scholar 

  28. M. Desai et al., J. Appl. Phys. 91, 7592 (2002).

    Article  ADS  Google Scholar 

  29. J. Dash et al., J. Magn. Soc. Jpn. 22, 176 (1998).

    Article  Google Scholar 

  30. Y. Q. Jia, J. Solid State Chem. 95, 184 (1991).

    Article  ADS  Google Scholar 

  31. A. Manikandan, L. J. Kennedy, M. Bououdina and J. J. Vijava, J. Magn. Magn. Mater. 349, 249 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology (IIT) Madras, for measurements. P. V. Srinivasa Rao thanks University Grants Commission (UGC), government of India, for granting a scholarship under the Faculty Development Program (FDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkata Srinivasa Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.V.S., Anjaneyulu, T. & Reddy, M.R. Effect of Gd Doping on the Structural and Magnetic Properties of Ni-Cu-Zn-Fe2O4. J. Korean Phys. Soc. 75, 304–308 (2019). https://doi.org/10.3938/jkps.75.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.304

Keywords

Navigation