Skip to main content
Log in

Quantum Signature Scheme for Participant Attack

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We present a quantum signature scheme for a participant attack using only Pauli operators. The arbitrator verifies the signature and serves to prevent the denial of participants as well as the existing arbitrated quantum signature. Conversely, Bob’s existential forgery and Alice’s disavowal, which are reported to be a shortcoming of Pauli operators, are not allowed. This simplifies the structure and increases the efficiency of communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (1994), p. 124.

    Book  Google Scholar 

  2. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Article  ADS  Google Scholar 

  3. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

    Article  ADS  Google Scholar 

  4. C. H. Bennett and G. Brassard, Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (1984), p. 175.

    Google Scholar 

  5. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. H. Bennett, G. Brassard and N. D. Mermin, Phys. Rev. Lett. 68, 55 (1992).

    ADS  Google Scholar 

  7. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Scarani, A. Acín, G. Ribordy and N. Gisin, Phys. Rev. Lett. 92, 057901 (2004).

    Article  ADS  Google Scholar 

  9. A. Karlsson, M. Koashi and N. Imoto, Phys. Rev. A 59, 162 (1999).

    Article  ADS  Google Scholar 

  10. M. Hillery, V. Bužek and A. Berthiaume, Phys. Rev. A 59, 1829, (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Cleve, D. Gottesman and H. K. Lo, Phys. Rev. Lett. 83, 648 (1999).

    Article  ADS  Google Scholar 

  12. K. Boström and R. Felbinger, Phys. Rev. Lett. 89, 187902 (2002).

    Article  ADS  Google Scholar 

  13. F. G. Deng, G. L. Long and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    Article  ADS  Google Scholar 

  14. R. L. Rivest, A. Shamir and L. Adleman, Commun. ACM 21, 120 (1978).

    Article  Google Scholar 

  15. G. Zeng and C. H. Keitel, Phys. Rev. A 65, 042312 (2002).

    Article  ADS  Google Scholar 

  16. Q. Li, W. H. Chan and D. Y. Long, Phys. Rev. A 79, 054307 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. X. Zou and D. Qiu, Phys. Rev. A 82, 042325 (2010).

    Article  ADS  Google Scholar 

  18. C. S. Yoon, M. S. Kang, J. I. Lim and H. J. Yang, Phys. Scr. 90, 015103 (2015).

    Article  ADS  Google Scholar 

  19. Y. G. Yang, Chin. Phys. B 17, 0415 (2008).

    Article  ADS  Google Scholar 

  20. X. Wen, Y. Yian, L. Ji and X. Niu, Phys. Scr. 81, 055001(2010).

    Article  ADS  Google Scholar 

  21. X. Wen, Phys. Scr. 82, 065403 (2010).

    Article  Google Scholar 

  22. R. Xu, L. Huang, W. Yang and L. He, Optics Commun. 284, 3654 (2011).

    Article  ADS  Google Scholar 

  23. X. Wen, X. Niu, L. Ji and Y. Tian, Optics Commun. 282, 666 (2009).

    Article  ADS  Google Scholar 

  24. T. Y. Wang and Q. Y. Wen, Chin. Phys. B 19, 060307 (2010).

    Article  ADS  Google Scholar 

  25. Y. G. Yang et al., Commun. Theor. Phys. 54, 84 (2010).

    Article  ADS  Google Scholar 

  26. F. Gao, F. Z. Guo, Q. Y. Wen and F. C. Zhu, Phys. Rev. Lett. 101, 208901 (2008).

    Article  ADS  Google Scholar 

  27. Y. S. Zhang, C. F. Li and G. C. Guo, Phys. Rev. A 63, 036301 (2001).

    Article  ADS  Google Scholar 

  28. F. Gao, Q. Y. Wen and F. C. Zhu, Chin. Phys. B 17, 3189 (2008).

    Article  ADS  Google Scholar 

  29. F. Gao, S. J. Qin, F. Z. Guo and Q. Y. Wen, Phys. Rev. A 84, 022344 (2011).

    Article  ADS  Google Scholar 

  30. J. W. Choi, K. Y. Chang and D. W. Hong, Phys. Rev. A 84, 062330 (2011).

    Article  ADS  Google Scholar 

  31. M. S. Kang et al., Int. J. Theor. Phys. 54, 614 (2015).

    Article  Google Scholar 

  32. C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Buhrman, R. Cleve, J. Watrous and R. Wolf, Phys. Rev. Lett. 87, 167902 (2001).

    Article  ADS  Google Scholar 

  34. K. J. Zhang, W. W. Zhang and D. Li, Quantum Inf. Process 12, 2655 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  35. M. S. Kang et al., Quantum Inf. Process 17, 254 (2018).

    Article  ADS  Google Scholar 

  36. F. Liu, K. Zhang and T. Cao, Int. J. Theor. Phys. 53, 277 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the R&D Convergence program of the NST (National Research Council of Science and Technology) of the Republic of Korea (Grant No. CAP-18-08-KRISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, K., Heo, J., Yoon, C.S. et al. Quantum Signature Scheme for Participant Attack. J. Korean Phys. Soc. 75, 271–276 (2019). https://doi.org/10.3938/jkps.75.271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.271

Keywords

Navigation