Skip to main content
Log in

Theory of Scalar Wave Scattering by a Planar Substrate Containing a Sphere

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The problem of scalar wave scattering by a planar substrate containing a sphere is analytically solved. The wave functions, as the solution, come in the form of infinite series. The factors in each term of the series explicitly show the involved process and the multiplicity of scattering between the surface of the substrate and the sphere. In air, the incident wave is either reflected by or transmitted into the substrate. The transmitted wave is either scattered by or transmitted into the sphere, and then the backwardly scattered wave going to the surface of the substrate is either transmitted back into air or reflected toward the sphere. The reflected wave is again either scattered by or transmitted into the sphere, and so on. Within the substrate, the scattering by the sphere and the reflection at the planar surface repeat in turn indefinitely to generate multiply scattered waves, which combine to make different wave functions for different regions in the form of infinite series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Rayleigh, Philos. Magn. 41, 107 (1871).

    Article  Google Scholar 

  2. G. Mie, Ann. Physik 25, 377 (1908).

    Article  ADS  Google Scholar 

  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

    Book  Google Scholar 

  4. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

    Google Scholar 

  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  6. M. I. Mishchenko, L. D. Travis and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, London, 2002).

    Google Scholar 

  7. F. Borghese, P. Denti and R. Saija, Scattering from Model Nonspherical Particles (Springer, Berlin, 2003).

    Book  Google Scholar 

  8. G. Kristensson, Scattering of Electromagnetic Waves by Obstacles (SciTech Publishing, Edison, 2016).

  9. A. V. Osipov and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications (Wiley, Chichester, 2017).

    Book  Google Scholar 

  10. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980).

    Google Scholar 

  11. M. I. Mishchenko, L. D. Travis and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University Press, London, 2006).

    Google Scholar 

  12. F. Moreno and F. Golzalez, Eds., Light Scattering from Microstructures (Springer, Berlin, 2000).

    Google Scholar 

  13. D. Bedeaux and J. Vlieger, Optical Properties of Surfaces, 2nd ed. (Imperial College Press, London, 2004).

    Book  Google Scholar 

  14. A. A. Maradudin, Ed., Light Scattering and Nanoscale Surface Roughness (Springer, Berlin, 2007).

    Google Scholar 

  15. B. C. Park and J. S. Kim, J. Korean Phys. Soc. 73, 1512 (2018).

    Article  ADS  Google Scholar 

  16. H. M. Jol, Ed., Ground Penetrating Radar Theory and Applications (Elsevier Science, Amsterdam, 2009).

    Google Scholar 

  17. B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, New York, 2011).

    Book  MATH  Google Scholar 

  18. B. C. Park and J. S. Kim, J. Korean Phys. Soc. 68, 853 (2016).

    Article  ADS  Google Scholar 

  19. G. Videen, J. Opt. Soc. Am. A 10, 110 (1993).

    Article  Google Scholar 

  20. M. J. Jory, E. A. Perkins and J. R. Sambles, J. Opt. Soc. Am. A 20, 1589 (2003).

    Article  ADS  Google Scholar 

  21. F. Frezza et al., J. Opt. Soc. Am. A 30, 783 (2013); F. Frezza and F.Mangini, J. Opt. Soc. Am. A 33, 947 (2016).

    Article  ADS  Google Scholar 

  22. J. S. Kim, J. Korean Phys. Soc. 70, 771 (2017).

    Article  ADS  Google Scholar 

  23. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark Eds., NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010).

    MATH  Google Scholar 

  24. G. Arfken, H. J. Weber and F. E. Harris, Mathematical Methods for Physicists, 7th ed. (Academic Press, Amsterdam, 2013).

    MATH  Google Scholar 

  25. A. J. Devaney and E. Wolf, J. Math. Phys. 15, 234 (1974).

    Article  ADS  Google Scholar 

  26. C. Cappellin, O. Breinbjerg and A. Frandsen, Radio Science 43, RS1012 (2008).

    Article  ADS  Google Scholar 

  27. E. Hecht, Optics, 5th ed. (Pearson, Essex, 2017).

    Google Scholar 

  28. F. Frezza, L. Pajewski, C. Ponti and G. Schettini, J. Opt. Soc. Am. A 27, 687 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Seung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.C., Kim, J.S. Theory of Scalar Wave Scattering by a Planar Substrate Containing a Sphere. J. Korean Phys. Soc. 74, 951–958 (2019). https://doi.org/10.3938/jkps.74.951

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.951

Keywords

Navigation