Skip to main content
Log in

An Applicable Time Reversal Analysis of Guided Waves in Al-Plate with Ultrasonic Immersion Testing

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ultrasonic guided waves are capable of propagating relatively long distances in plate-like structures generates leaky lamb waves from the metal surface, a key phenomenon to characterize the surface defects of metal structures. The general technique of time reversing guided plate waves is advantageous to investigate various kinds of defects. The present research has been focused on the adopted time reversal technique for ultrasonic immersion testing. System’s electromechanical irreversibility effect is a barrier for the time reversal analysis of lamb waves in water medium based immersion testing which cannot be avoided experimentally. In this study, this critical time reversal signal reconstruction problem has been solved using the correction factor calculated from the reference experiment and finite element method (FEM) numerical simulation in a water medium. Two kinds of experiments were conducted, first one is a through-transmission system without the use of specimen for the calculation of correction factor and another experiment is pitch-catch system performed on the aluminum specimen, using two 1 MHz center frequency transducers with a diameter of 12.7 mm. Basically, this paper is intended to investigate a methodical approach applicable to analyze guided plate wave signal reconstruction using time reversal technique in water medium ultrasonic immersion testing. The proposed approach can be applied in any time reversal inspection of a plate and pipe-like structures in ultrasonic immersion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Price, B. J. Martin and D. A. Scott, Acoustics Australia 27, 95, (1999).

    Google Scholar 

  2. P. Cawley, M. J. S. Lowe, D. N. Alleyne, B. Pavlakovic and P. Wilcox, J. Materials Evaluation 61, 66 (2003).

    Google Scholar 

  3. R. Murayama, J. Sensor Techno. 6, 110 (2016).

    Article  Google Scholar 

  4. B. Zima and M. Rucka, J. Civil and Mech. Engineering 16, 387 (2016).

    Article  Google Scholar 

  5. F. Yan, R. L. Royer, Jr. and J. L. Rose, J. Intelligent Material Systems & Structures 21, 377 (2010).

    Article  Google Scholar 

  6. G. R. Liu and J. D. Achenbach, J. Appl. Mech. 61, 270 (1994).

    Article  ADS  Google Scholar 

  7. L. Gavric’, J. Sound Vib. 185, 531 (1995).

    Article  ADS  Google Scholar 

  8. T. Hayashi and K. Kawashima, J. Ultrasonics 40, 193 (2002).

    Article  Google Scholar 

  9. T. Hayashi and J. L. Rose, J. Mater. Eval. 61, 75 (2003).

    Google Scholar 

  10. T. Hayashi, C. Tamayama and M. Murase, J. Ultrasonics 44, 17 (2006).

    Article  Google Scholar 

  11. T. Hayashi, K. Kawashima and J. L. Rose, J. Key Eng. Mater. 270, 410 (2004).

    Article  Google Scholar 

  12. T. Hayashi, K. Kawashima, Z. Sun and J. L. Rose, J. Press. Ves. Technol. 127, 322 (2005).

    Article  Google Scholar 

  13. M. K. Hinders, E. V. Malyarenko and J. C. P. McKeon, J. Proc. SPIE 3586 (1999).

  14. K. S. Ho, D. R. Billson and D. A. Hutchins, J. Nondestructive Testing and Eval. 22, 19 (2007).

    Article  ADS  Google Scholar 

  15. K. Edalati, A. Kermani, M. Seiedi and M. Movafeghi, J. Materials and Product Techno. 27, (2006).

  16. A. Jankauskas and L. Mazeika, J. Metals. 6, 315 (2016).

    Article  Google Scholar 

  17. P. A. Petcher and S. Dixon, Nondestructive Testing and Evaluation 32, 113 (2017).

    Article  ADS  Google Scholar 

  18. P. Cawley and D. Alleyne, J. Ultrasonics 34, 287 (1996).

    Article  Google Scholar 

  19. Z. Guo, J. D. Achenbach and S. Krishnaswamy, J. Ultrasonics 35, 423 (1997).

    Article  Google Scholar 

  20. M. Hirao, H. Ogi and H. Fukuoka, J. Ultrasonics 64, 3198 (1993).

    Google Scholar 

  21. E. Brignoli, M. Gotti and K. Stokoe, Geotechnical Testing Journal 19, 384 (1996).

    Article  Google Scholar 

  22. P. Wilcox, M. Lowe and P. Cawley, J. NDT & E International 34, 1 (2001).

    Article  Google Scholar 

  23. L. Mažeika, R. Kažys, R. Raišutis and R. Šliteris, Int. J. Mater. Prod. Technol. 41, 128 (2011).

    Article  Google Scholar 

  24. D. N. Alleyne and P. Cawley, J. NDT & E International 25, 11 (1992).

    Article  Google Scholar 

  25. Ditri, J. J. Joseph, L. Chen and Guixiang, J. Proceedings of the 18th Annual Review 11B, 2109 (1991).

    Google Scholar 

  26. J. L. Rose and J. J. Ditri, J. Reinforced Plastics & Compo. 12, 536 (1993).

    Article  ADS  Google Scholar 

  27. D. E. Chimenti, J. ASME. 50, 247 (1997).

    Google Scholar 

  28. H. J. Shin and J. L. Rose, J. Nondestructive Eval. 17, 27 (1998).

    Article  Google Scholar 

  29. J. L. Rose, K. M. Rajana and M. K. T. Hansch, J. Adhesion 50, 72 (1995).

    Article  Google Scholar 

  30. J. L. Rose, (Cambridge, UK: Cambridge University Press, 1999).

  31. J. L. Rose and L. E. Soley, J. Materials Eval. 58, 1080 (2000).

    Google Scholar 

  32. B. Xu and V. Giurgiutiu, J. Nondestructive Eval. 26, 123 (2007).

    Article  Google Scholar 

  33. H. W. Park, S. B. Kim and H. Sohn, J. Wave Motion 46, 451 (2009).

    Article  Google Scholar 

  34. M. Fink, IEEE Ultrasonics 39, 555 (1992).

    Article  Google Scholar 

  35. C. Prada, E. Kerbrat, D. Cassereau and M. Fink, Inverse Problems, France 18, 1761 (2002).

    Article  ADS  Google Scholar 

  36. J-L. Robert, M. Burcher and C. Cohen-Bacrie, J. Acoust. Soc. Am. 119, 3848 (2006).

    Article  ADS  Google Scholar 

  37. J. L. Rose, J. Pressure Vessel Technol. 124, 273 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jin Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Abera, G., Kishore, M. et al. An Applicable Time Reversal Analysis of Guided Waves in Al-Plate with Ultrasonic Immersion Testing. J. Korean Phys. Soc. 74, 340–348 (2019). https://doi.org/10.3938/jkps.74.340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.340

Keywords

Navigation