Skip to main content
Log in

Electronic Structure of Graphene Grown on a Hydrogen-terminated Ge (110) Wafer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using angle-resolved photoemission spectroscopy, we studied the electronic structure of graphene grown on a Ge (110) wafer, where a single-crystal single-layer graphene was recently grown using chemical vapor deposition. The growth mechanism of the single-layer single-crystal graphene was related to the hydrogen termination of the Ge (110) surface. To further understand the growth mechanism, we measured the electronic structure of the graphene-covered Ge (110) wafer in a vacuum as a function of the increasing temperature, which led to a deintercalation of the hydrogen atoms. Furthermore, we measured the electronic structure after the reintercalation of the hydrogen atoms between the Ge substrate and graphene. These findings show that hydrogen is intercalated between the Ge substrate and graphene after the growth of graphene using chemical vapor deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 324, 1312 (2009).

    Article  ADS  Google Scholar 

  2. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo and R. S. Ruoff, Nano Lett. 10, 4328 (2010).

    Article  ADS  Google Scholar 

  3. N. Petrone, C. R. Dean, I. Meric, A. M. van der Zande, P. Y. Huang, L. Wang, D. Muller, K. L. Shepard and J. Hone, Nano Lett. 12, 2751 (2012).

    Article  ADS  Google Scholar 

  4. J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang and D. Whang, Science 344, 286 (2014).

    Article  ADS  Google Scholar 

  5. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater. 24, 2320 (2012).

    Article  Google Scholar 

  6. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small 8, 966 (2012).

    Article  Google Scholar 

  7. M. R. Laskar, L. Ma, S. Kannappan, P. S. Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Y. Wu and S. Rajan, Appl. Phys. Lett. 102, 252108 (2013).

    Article  ADS  Google Scholar 

  8. W. Wu, D. De, S. C. Chang, Y. N. Wang, H. B. Peng, J. M. Bao and S. S. Pei, Appl. Phys. Lett. 102, 142106 (2013).

    Article  ADS  Google Scholar 

  9. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S-S. Pei, Appl. Phys. Lett. 93, 113103 (2008).

    Article  ADS  Google Scholar 

  10. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  11. C. Riedl, C. Coletti and U. Starke, J. Phys. D: Appl. Phys. 43, 374009 (2010).

    Article  Google Scholar 

  12. H. Hibino, S. Tanabe, S. Mizuno and H. Kageshima, J. Phys. D: Appl. Phys. 45, 154008 (2012).

    Article  ADS  Google Scholar 

  13. S. Marchini, S. Günther and J. Wintterlin, Phys. Rev. B 76, 075429 (2007).

    Article  ADS  Google Scholar 

  14. J. Coraux, A. T. N’Diaye, C. Busse and T. Michely, Nano Lett. 8, 565 (2008).

    Article  ADS  Google Scholar 

  15. J. Avila, I. Razado, S. Lorcy, R. Fleurier, E. Pichonat, D. Vignaud, X. Wallart and M. C. Asensio, Sci. Rep. 3, 2439 (2013).

    Article  ADS  Google Scholar 

  16. L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten and C. Stampfer, Sci. Adv. 1, e1500222 (2015).

    Article  ADS  Google Scholar 

  17. J. D. Caldwell, T. J. Anderson, J. C. Culbertson, G. G. Jernigan, K. D. Hobart, F. J. Kub, M. J. Tadjer, J. L. Tedesco, J. K. Hite, M. A. Mastro, R. L. Myers-Ward, C. R. Eddy, P. M. Campbell and D. K. Gaskill, ACS Nano, 4, 1108 (2010).

    Article  Google Scholar 

  18. J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel, D. K. Sadana and C. Dimitrakopoulos, Science 342, 833 (2013).

    Article  ADS  Google Scholar 

  19. L. B. Gao, W. C. Ren, H. L. Xu, L. Jin, Z. X. Wang, T. Ma, L. P. Ma, Z. Y. Zhang, Q. Fu, L. M. Peng, X. H. Bao and H. M. Cheng, Nat. Commun. 3, 699 (2012).

    Article  Google Scholar 

  20. S. Choubak, P. L. Levesque, E. Gaufres, M. Biron, P. Desjardins and R. Martel, J. Phys. Chem. C 118, 21532 (2014).

    Article  Google Scholar 

  21. J. Dai, D. Wang, M. Zhang, T. Niu, A. Li, M. Ye, S. Qiao, G. Ding, X. Xie, Y. Wang, P. K. Chu, Q. Yuan, Z. Di, X. Wang, F. Ding and B. I. Yakobson, Nano Lett. 16, 3160 (2016).

    Article  ADS  Google Scholar 

  22. P. C. Rogge, M. E. Foster, J. M. Wofford, K. F. McCarty, N. C. Bartelt and O. D. Dubon, MRS Commun. 5, 539 (2015).

    Article  Google Scholar 

  23. L. Gan and Z. Luo, ACS Nano 7, 9480 (2013).

    Article  Google Scholar 

  24. W. Kern, J. Electrochem. Soc. 137, 1887 (1990).

    Article  Google Scholar 

  25. S. W. King, R. F. Davis and R. J. Nemanich, Surf. Sci. 603, 3104 (2009).

    Article  ADS  Google Scholar 

  26. S. Shimokawa, A. Namiki, M. N-Gamo and T. Ando, J. Chem. Phys. 113, 6916 (2000).

    Article  ADS  Google Scholar 

  27. J. E. Crowell and G. Lu, J. Electron. Spectrosc. Relat. Phenom. 54/55, 1045 (1990).

    Article  Google Scholar 

  28. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov and U. Starke, Phys. Rev. Lett. 103, 246804 (2009).

    Article  ADS  Google Scholar 

  29. M. Niwano, M. Terashi and J. Kuge, Surf. Sci. 420, 6 (1999).

    Article  ADS  Google Scholar 

  30. M. Dürr and U. Höfer, Surf. Sci. Rep. 61, 465 (2006).

    Article  ADS  Google Scholar 

  31. M. Dürr, Z. Hu, A. Biedermann, U. Höfer and T. F. Heinz, Phys. Rev. Lett. 88, 046104 (2002).

    Article  ADS  Google Scholar 

  32. F. Speck, J. Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H. B. Weber and T. Seyller, Appl. Phys. Lett. 99, 122106 (2011).

    Article  ADS  Google Scholar 

  33. N. Sieber, B. F. Mantel, T. Seyller, J. Ristein, L. Ley, T. Heller, D. R. Batchelor and D. Schmeiβer, Appl. Phys. Lett. 78, 1216 (2001).

    Article  ADS  Google Scholar 

  34. K. V. Emtsev, A. A. Zakharov, C. Coletti, S. Forti and U. Starke, Phys. Rev. B 84, 125423 (2011).

    Article  ADS  Google Scholar 

  35. E. Aktürk, C. Ataca and S. Ciraci, Appl. Phys. Lett. 96, 123112 (2010).

    Article  ADS  Google Scholar 

  36. D. Ioannis and M. Antonino La, Appl. Phys. Express 4, 125101 (2011).

    Article  Google Scholar 

  37. J. Tesch, F. Paschke, M. Fonin, M. Wietstruk, S. Bottcher, R. J. Koch, A. Bostwick, C. Jozwiak, E. Rotenberg, A. Makarova, B. Paulus, E. Voloshina and Y. Dedkov, Nanoscale 10, 6088 (2018).

    Article  Google Scholar 

  38. F. Theilmann, R. Matzdorf, G. Meister and A. Goldmann, Phys. Rev. B 56, 3632 (1997).

    Article  ADS  Google Scholar 

  39. F. Theilmann, R. Matzdorf and A. Goldmann, Surf. Sci. 420, 33 (1999).

    Article  ADS  Google Scholar 

  40. K. R. Knox, A. Locatelli, M. B. Yilmaz, D. Cvetko, T. O. Menteş, M. Á. Ni˜no, P. Kim, A. Morgante and R. M. Osgood, Phys. Rev. B 84, 115401 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Real Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.J., Kim, H.W., Khadka, I.B. et al. Electronic Structure of Graphene Grown on a Hydrogen-terminated Ge (110) Wafer. J. Korean Phys. Soc. 73, 656–660 (2018). https://doi.org/10.3938/jkps.73.656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.656

Keywords

Navigation