Skip to main content
Log in

Causality in Plasma Electrodynamics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Causality in electrodynamics is reviewed in regard to the interrelations among the causal requirement, the analyticity of the dielectric permittivity, and the Kramers-Kronig relations. We show that the collisionless damping (Landau damping) of a plasma wave can be formally derived from the causal requirement imposed on the susceptibility of a Vlasov-Poisson plasma. Here, the causal requirement is that the susceptibility χ(t) be nil for t < 0, which means the future electric field has nothing to do with the response effected in the medium at the present time. We show that this single requirement provides the analyticity of χ(ω) in the upper half-ω plane, the Kramers- Kronig relations, and Landau damping. Cerenkov emission which is the inverse process of Landau damping is also discussed in the light of causality. We present an easy way to calculate the electric fluctuation in a magnetized plasma by regarding a plasma as an assembly of non-interacting cold beams. We investigate the case of a separable distribution function \(g(x,t,v) = \tilde g(v)f(x - {v_0}t)\), which corresponds to a special type of Benstein-Greene-Kruskal wave and a slight generalization of Van Kampen’s distribution function. We review Van Kampen’s theory of a Vlasov-Poisson system, which corresponds to the Sturm-Liouville theory of differential equations, and show that the Vlasov- Poisson equations in this separable case are trivially solved in terms of the separation constant. It is philosophically interesting that the collisionless damping of a plasma wave can be attributed to causality, which defines the direction of time and is operative in general electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Titchmarsh, Introduction to the theory of Fourier integrals (Clarendon Press, Oxford, 1937).

    MATH  Google Scholar 

  2. G. Arfken, Mathematical methods for physicists (Academic Press, Orlando, 1985).

    MATH  Google Scholar 

  3. Y. K. Lim and H. J. Lee, Open Plasma Phys. J. 5, 36 (2012).

    Article  ADS  Google Scholar 

  4. H. J. Lee, Open Plasma Phys. J. 6, 30 (2013).

    Article  ADS  Google Scholar 

  5. H. J. Lee and M. Y. Song, J. of Modern Phys. 4, 555 (2013).

    Article  ADS  Google Scholar 

  6. Y. D. Jung and H. J. Lee, New Physics: Sae Mulli 63, 438 (2013).

    Google Scholar 

  7. L. Landau, J. Phys. 10, 25 (1946).

    Google Scholar 

  8. H. J. Lee, J. Korean Phys. Soc. 66, 1167 (2015).

    Article  ADS  Google Scholar 

  9. N. G. Van Kampen, Physica 21, 949 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).

    Article  ADS  Google Scholar 

  11. H. J. Lee, J. Korean Phys. Soc. 69, 1191 (2016).

    Article  ADS  Google Scholar 

  12. N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  13. K. M. Case, Ann. Phys. 7, 349 (1959).

    Article  ADS  Google Scholar 

  14. I. B. Bernstein, J. M. Greene and M. D. Kruskal, Phys. Rev. 108, 546 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Bekefi, Radiation Processes in Plasmas (John Wiley, New York, 1966).

    Google Scholar 

  16. N. A. Krall and A. W. Trivelpiece, Pinciples of Plasma Physics (McGraw-Hill, New York, 1973).

    Google Scholar 

  17. A. F. Alexandrov, L. S. Bogdankevich and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Heidelberg, 1984).

    Book  Google Scholar 

  18. H. B. Dwight, Tables of Integrals and Other Mathematical Data (Macmillan Co., New York, 1967).

    MATH  Google Scholar 

  19. P. A. Sturrock, Plasma Physics (Cambridge University Press, New York, 1994).

    Book  Google Scholar 

  20. N. G. Van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics (John Wiley, New York, 1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee J. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J. Causality in Plasma Electrodynamics. J. Korean Phys. Soc. 73, 65–85 (2018). https://doi.org/10.3938/jkps.73.65

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.65

Keywords

Navigation