Skip to main content
Log in

Constraints from Heavy Higgs Boson Masses in the two Higgs Doublet Model

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Upon the absence of signals of new physics at the Large Hadron Collider, a reasonable strategy is to assume that new particles are very heavy and that the other model parameters are still unknown. In the aligned two Higgs doublet model, however, heavy Higgs boson masses above 500 GeV enhance some couplings in the scalar potential, which causes a breakdown of the perturbative unitarity in general. Some tuning among model parameters is required. We find that one piece of information on the heavy Higgs boson mass, say MH, has significant implications: (i) the other heavy Higgs bosons should have masses similar to MH within ±O(10)%; (ii) the inequalities from the theoretical constraints are practically reduced to an equation such that m 212 tan β is constant, where m 212 is the soft Z2 breaking parameter and tan β is the ratio of two vacuum expectation values; (iii) the triple Higgs coupling λHHh is constant over tan β while λHHH and λAAH are linearly proportional to tan β. The double Higgs-strahlung process of e+eZHH is also studied, for which the total cross section is almost constant for a given MH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

  3. G. Aad et al. [ATLAS and CMS Collaborations], JHEP 1608, 045 (2016).

    ADS  Google Scholar 

  4. G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 76, 6 (2016).

    Article  ADS  Google Scholar 

  5. I. P. Ivanov, Prog. Part. Nucl. Phys. 95, 160 (2017).

    Article  ADS  Google Scholar 

  6. N. D. Christensen, T. Han and S. Su, Phys. Rev. D 85, 115018 (2012).

    Article  ADS  Google Scholar 

  7. P. Athron et al. [GAMBIT Collaboration], Eur. Phys. J. C 77, 824 (2017).

    Article  ADS  Google Scholar 

  8. R. Aggleton, D. Barducci, N. E. Bomark, S. Moretti and C. Shepherd-Themistocleous, JHEP 1702, 035 (2017).

    Article  ADS  Google Scholar 

  9. G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, Phys. Rev. D 88, 075008 (2013).

    Article  ADS  Google Scholar 

  10. K. Cheung, J. S. Lee and P. Y. Tseng, JHEP 1305, 134 (2013).

    Article  ADS  Google Scholar 

  11. C. W. Chiang and K. Yagyu, JHEP 1307, 160 (2013).

    Article  ADS  Google Scholar 

  12. S. Chang et al., JHEP 1305, 075 (2013).

    Article  ADS  Google Scholar 

  13. S. Chang et al., JHEP 1409, 101 (2014).

    Article  ADS  Google Scholar 

  14. S. Chang, S. K. Kang, J. P. Lee and J. Song, Phys. Rev. D 92, 075023 (2015).

    Article  ADS  Google Scholar 

  15. M. Aaboud et al. [ATLAS Collaboration], arXiv: 1710.07235 [hep-ex].

  16. M. Aaboud et al. [ATLAS Collaboration], arXiv: 1708.09638 [hep-ex].

  17. M. Aaboud et al. [ATLAS Collaboration], arXiv: 1708.04445 [hep-ex].

  18. M. Aaboud et al. [ATLAS Collaboration], Phys. Lett. B 775, 105 (2017).

    Article  ADS  Google Scholar 

  19. V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 767, 147 (2017).

    Article  ADS  Google Scholar 

  20. M. Aaboud et al. [ATLAS Collaboration], JHEP 1801, 055 (2018).

    Article  ADS  Google Scholar 

  21. J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang and S. Kraml, Phys. Rev. D 93, 035027 (2016).

    Article  ADS  Google Scholar 

  22. J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019 (2003).

    Article  ADS  Google Scholar 

  23. G. C. Branco et al., Phys. Rept. 516, 1 (2012).

    Article  ADS  Google Scholar 

  24. N. Chakrabarty, U. K. Dey and B. Mukhopadhyaya, JHEP 1412, 166 (2014).

    Article  ADS  Google Scholar 

  25. B. Coleppa, B. Fuks, P. Poulose and S. Sahoo, arXiv:1712.06593 [hep-ph].

  26. M. Carena, I. Low, N. R. Shah and C. E. M. Wagner, JHEP 1404, 015 (2014).

    Article  ADS  Google Scholar 

  27. P. S. Bhupal Dev and A. Pilaftsis, JHEP 1412, 024 (2014); Erratum: JHEP 1511, 147 (2015).

    Article  ADS  Google Scholar 

  28. K. Cheung and O. C. W. Kong, Phys. Rev. D 68, 053003 (2003).

    Article  ADS  Google Scholar 

  29. A. Pich and P. Tuzon, Phys. Rev. D 80, 091702 (2009).

    Article  ADS  Google Scholar 

  30. S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Phys. Lett. B 704, 303 (2011).

    Article  ADS  Google Scholar 

  31. C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  32. A. Abulencia et al. [CDF Collaboration], Phys. Rev. Lett. 96, 042003 (2006).

    Article  ADS  Google Scholar 

  33. H. Ohman [ATLAS and CMS Collaborations], PoS LHCP 2016, 085 (2016).

    Google Scholar 

  34. G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 113, 171801 (2014).

    Article  ADS  Google Scholar 

  35. CMS Collaboration, CMS-PAS-HIG-14-006.

  36. G. Aad et al. [ATLAS Collaboration], JHEP 1411, 056 (2014).

    Article  ADS  Google Scholar 

  37. V. Khachatryan et al. [CMS Collaboration], JHEP 1410, 160 (2014).

    Article  ADS  Google Scholar 

  38. J. F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide (Addison-Wesley Publishing Company, 1990).

    Google Scholar 

  39. P. H. Chankowski, M. Krawczyk and J. Zochowski, Eur. Phys. J. C 11, 661 (1999).

    Article  ADS  Google Scholar 

  40. V. D. Barger, J. L. Hewett and R. J. N. Phillips, Phys. Rev. D 41, 3421 (1990).

    Article  ADS  Google Scholar 

  41. S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B 353, 591 (1991).

    Article  ADS  Google Scholar 

  42. F. Mahmoudi and O. Stal, Phys. Rev. D 81, 035016 (2010).

    Article  ADS  Google Scholar 

  43. M. Misiak and M. Steinhauser, Eur. Phys. J. C 77, 201 (2017).

    Article  ADS  Google Scholar 

  44. J. Song and Y. W. Yoon, Phys. Rev. D 91, 113012 (2015).

    Article  ADS  Google Scholar 

  45. A. Abdesselam et al. [Belle Collaboration], arXiv: 1608.02344 [hep-ex].

  46. P. M. Ferreira et al., arXiv:1407.4396 [hep-ph].

  47. I. P. Ivanov, Phys. Rev. D 75, 035001 (2007); Erratumibid. D 76, 039902 (2007).

    Article  ADS  Google Scholar 

  48. A. Arhrib, hep-ph/0012353.

  49. A. Barroso, P. M. Ferreira, I. P. Ivanov and R. Santos, JHEP 1306, 045 (2013).

    Article  ADS  Google Scholar 

  50. A. Djouadi, W. Kilian, M. Muhlleitner and P. M. Zerwas, Eur. Phys. J. C 10, 27 (1999).

    ADS  Google Scholar 

  51. A. Arhrib, R. Benbrik and C. W. Chiang, Phys. Rev. D 77, 115013 (2008).

    Article  ADS  Google Scholar 

  52. D. d’Enterria, arXiv:1602.05043 [hep-ex].

  53. H. Baer et al., arXiv:1306.6352 [hep-ph].

  54. CEPC-SPPC Study Group, IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01.

  55. D. Dannheim et al., arXiv:1208.1402 [hep-ex].

  56. L. Evans et al. [Linear Collide Collaboration], arXiv: 1711.00568 [physics.acc-ph].

  57. S. Asai et al., arXiv:1710.08639 [hep-ex].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghyeon Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JH., Kim, T.Y. & Song, J. Constraints from Heavy Higgs Boson Masses in the two Higgs Doublet Model. J. Korean Phys. Soc. 73, 289–296 (2018). https://doi.org/10.3938/jkps.73.289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.289

Keywords

Navigation