Skip to main content
Log in

Neutrinoless Double Beta Decay and Light Sterile Neutrino

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The recent neutrino experiment results show a preference on normal mass ordering of neutrinos. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in three-neutrino framework based on the normal ordering. Current research is to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of light sterile neutrino as a solution to the higher effective mass of electron neutrino expected by experiments under operation. A few short-baseline oscillation experiments gave rise to exclusion bound to the mass of sterile neutrino and its mixing with the lightest neutrino. It is demonstrated that results of neutrinoless double beta decays can also narrow down the ranges of the mass and the mixing angle of sterile neutrino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics (Oxford Press, 2009).

    Google Scholar 

  2. J. D. Vergados, Phys. Rept. 361, 1 (2002).

    Article  ADS  Google Scholar 

  3. J. Barea, J. Kotila and F. Iachello, Phys. Rev. Lett. 109, 042501 (2012).

    Article  ADS  Google Scholar 

  4. S. M. Bilenky and C. Giunti, Mod. Phys. Lett. A 27, 1230015 (2012).

    Article  ADS  Google Scholar 

  5. M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

    Article  ADS  Google Scholar 

  6. J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990)

    Article  ADS  Google Scholar 

  7. H. B. Nielsen and Y. Takanishi, Phys. Lett. B 507, 241 (2001).

    Article  ADS  Google Scholar 

  8. E. W. Kolb and S. Wolfram, Nucl. Phys. B 172, 224 (1980) [Erratum-ibid. B 195, 542 (1982)].

    Article  ADS  Google Scholar 

  9. V. Barger, D. A. Dicus, H. J. He and T. J. Li, Phys. Lett. B 583, 173 (2004).

    Article  ADS  Google Scholar 

  10. M. A. Luty, Phys. Rev. D 45, 455 (1992); Phys. Lett. B 345, 248 (1995) [Erratum-ibid. B 382, 447 (1996)]

    Article  ADS  Google Scholar 

  11. L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384, 169 (1996)

    Article  ADS  Google Scholar 

  12. W. Buchmuller and M. Plumacher, Phys. Lett. B 431, 354 (1998)

    Article  ADS  Google Scholar 

  13. W. Buchmuller and M. Plumacher, Int. J. Mod. Phys. A 15, 5047 (2000).

    ADS  Google Scholar 

  14. T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi and M. Tanimoto, Phys. Rev. Lett. 89, 231601 (2002)

    Article  ADS  Google Scholar 

  15. S. Davidson and A. Ibarra, Nucl. Phys. B 648, 345 (2003)

    Article  ADS  Google Scholar 

  16. G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim, I. Masina, M. N. Rebelo and C. A. Savoy, Phys. Rev. D 67, 073025 (2003)

    Article  ADS  Google Scholar 

  17. A. de Gouvea, B. Kayser and R. N. Mohapatra, Phys. Rev. D 67, 053004 (2003)

    Article  ADS  Google Scholar 

  18. S. Pascoli, S. T. Petcov and W. Rodejohann, Phys. Rev. D 68, 093007 (2003)

    Article  ADS  Google Scholar 

  19. W. Grimus and L. Lavoura, J. Phys. G 30, 1073 (2004)

    Article  ADS  Google Scholar 

  20. A. Ibarra and G. G. Ross, Phys. Lett. B 591, 285 (2004)

    Article  ADS  Google Scholar 

  21. S. Davidson and R. Kitano, JHEP 0403, 020 (2004)

    Article  ADS  Google Scholar 

  22. M. C. Chen and K. T. Mahanthappa, Phys. Rev. D 71, 035001 (2005)

    Article  ADS  Google Scholar 

  23. S. Pascoli, S. T. Petcov and A. Riotto, Nucl. Phys. B 774, 1 (2007).

    Article  ADS  Google Scholar 

  24. K. Siyeon, J. Korean Phys. Soc. 69, 1638 (2016).

    Article  ADS  Google Scholar 

  25. A. Gando et al. [KamLAND-Zen Collaboration], Phys. Rev. Lett. 117, 082503 (2016), Addendum: [Phys. Rev. Lett. 117, 109903 (2016)].

    Article  ADS  Google Scholar 

  26. J. B. Albert et al. [EXO Collaboration], Phys. Rev. Lett. 120, 072701 (2018).

    Article  ADS  Google Scholar 

  27. C. Alduino et al. [CUORE Collaboration], Phys. Rev. Lett. 120, 132501 (2018).

    Article  ADS  Google Scholar 

  28. M. Agostini et al. [GERDA Collaboration], Phys. Rev. Lett. 120, 132503 (2018).

    Article  ADS  Google Scholar 

  29. S. I. Alvis et al. [Majorana Collaboration], Phys. Rev. Lett. 120, 211804 (2018).

    Article  ADS  Google Scholar 

  30. R. Arnold et al., Eur. Phys. J. C 78, 821 (2018).

    Article  ADS  Google Scholar 

  31. V. Alenkov et al. [AMoRE Collaboration], arXiv:1512. 05957 [physics.ins-det].

  32. J. Y. Lee et al., IEEE Trans. Nucl. Sci. 63, 543 (2016).

    Article  ADS  Google Scholar 

  33. A. Luqman et al., Nucl. Instrum. Meth. A 855, 140 (2017).

    Article  ADS  Google Scholar 

  34. P. Adamson et al. [NOvA Collaboration], Phys. Rev. Lett. 118, 231801 (2017).

    Article  ADS  Google Scholar 

  35. K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 121, 171802 (2018).

    Article  ADS  Google Scholar 

  36. P. Adamson et al. [Daya Bay and MINOS Collaborations], Phys. Rev. Lett. 117, 151801 (2016) Addendum: [Phys. Rev. Lett. 117, 209901 (2016)].

    Article  ADS  Google Scholar 

  37. Y. J. Ko et al. [NEOS Collaboration], Phys. Rev. Lett. 118, 121802 (2017).

    Article  ADS  Google Scholar 

  38. J. Ashenfelter et al. [PROSPECT Collaboration], arXiv: 1806.02784 [hep-ex].

  39. Y. Abreu et al. [SoLid Collaboration], JINST 12, P04024 (2017).

    Article  Google Scholar 

  40. I. Alekseev et al. [DANSS Collaboration], Phys. Lett. B, 038 (2018)

    Google Scholar 

  41. H. Almazán et al. [STEREO Collaboration], Phys. Rev. Lett. 121, 161801 (2018).

    Article  ADS  Google Scholar 

  42. S. R. Elliott, A. A. Hahn and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987).

    Article  ADS  Google Scholar 

  43. A. S. Barabash, Phys. Rev. C 81, 035501 (2010).

    Article  ADS  Google Scholar 

  44. R. Saakyan, Ann. Rev. Nucl. Part. Sci. 63, 503 (2013).

    Article  ADS  Google Scholar 

  45. A. Faessler, V. Rodin and F. Simkovic, J. Phys. G 39, 124006 (2012).

    Article  ADS  Google Scholar 

  46. M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  47. G. Drexlin [KATRIN Collaboration], Nucl. Phys. Proc. Suppl. 145, 263 (2005).

    Article  Google Scholar 

  48. C. Giunti and E. M. Zavanin, JHEP 1507, 171 (2015).

    Article  ADS  Google Scholar 

  49. G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and A. Letourneau, Phys. Rev. D 83, 073006 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Siyeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, C.H., Kim, B.J., Ko, Y.J. et al. Neutrinoless Double Beta Decay and Light Sterile Neutrino. J. Korean Phys. Soc. 73, 1625–1630 (2018). https://doi.org/10.3938/jkps.73.1625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1625

Keywords

Navigation