Skip to main content
Log in

Photocurrent Characteristics of Zinc-Oxide Films Prepared by Using Sputtering and Spin-Coating Methods

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The photocurrent characteristics of zinc-oxide (ZnO) thin-film transistors (TFTs) prepared using radio-frequency sputtering and spin-coating methods were investigated. Various characterization methods were used to compare the physical and the chemical properties of the sputtered and the spin-coated ZnO films. X-ray photoelectron spectroscopy was used to investigate the chemical composition and state of the ZnO films. The transmittance and the optical band gap were measured by using UV-vis spectrometry. The crystal structures of the prepared ZnO films were examined by using an X-ray diffractometer, and the surfaces of the films were investigated by using scanning electron microscopy. ZnO TFTs were prepared using both sputter and solution processes, both of which showed photocurrent characteristics when illuminated by light. The sputtered ZnO TFTs had a photoresponsivity of 3.08 mA/W under illumination with 405-nm light while the solution-processed ZnO TFTs had a photoresponsivity of 5.56 mA/W. This study provides useful information for the development of optoelectronics based on ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Lin, K. C. Liu, S. T. Chang and C. S. Li, Thin Solid Films 520, 3079 (2012).

    Article  ADS  Google Scholar 

  2. H. Yin, S. Kim, C. J. Kim, I. Song, J. Park, S. Kim and Y. Park, Appl. Phys. Lett. 93, 172109 (2008).

    Article  ADS  Google Scholar 

  3. M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein and H. von Wenckstern, Phys. Status Solidi A 207, 1437 (2010).

    Article  ADS  Google Scholar 

  4. Y. H. Lin, S. R. Thomas, H. Faber, R. Li, M. A. McLachlan, P. A. Patsalas and T. D. Anthopoulos, Adv. Electron. Mater. 2, 1600070 (2016).

    Article  Google Scholar 

  5. C. W. Shih and A. Chin, Scientific Reports 7, 1147 (2017).

    Article  ADS  Google Scholar 

  6. B. S. Ong, C. Li, Y. Li, Y. Wu and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007).

    Article  Google Scholar 

  7. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kanekol, Jpn. J. Appl. Phys. 48, 011301 (2009).

    Article  ADS  Google Scholar 

  8. S-I. Kim, S. W. Kim, C. J. Kim and J-S. Park, J. Electrochem. Soc. 158, H115 (2011).

    Article  Google Scholar 

  9. C-Y. Tsay, C-W. Wu, C-M. Lei, F-S. Chen and C-K. Lin, Thin Solid Films 519, 1516 (2010).

    Article  ADS  Google Scholar 

  10. S. Hu, H. Ning, K. Lu, Z. Fang, Y. Li, R. Yao, M. Xu, L. Wang, J. Peng and X. Lu, Nanomaterials 8, 197 (2018).

    Article  Google Scholar 

  11. H. Ji, Y. Wei, X. Zhang and R. Jiang. Appl. Phys. Lett. 111, 202102 (2017).

    Article  ADS  Google Scholar 

  12. H-W. Zan, W-T. Chen, H-W. Hsueh, S-C. Kao, M-C. Ku, C-C. Tsai and H-F. Meng, Appl. Phys. Lett. 97, 203506 (2010).

    Article  ADS  Google Scholar 

  13. A. Nathan, S. Lee, S. Jeon and J. Robertson, J. Disp. Technol. 10, 917 (2014).

    Article  ADS  Google Scholar 

  14. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

    Article  ADS  Google Scholar 

  15. S. J. Lee et al., ACS Appl. Mater. Interfaces 10, 3810 (2018).

    Article  Google Scholar 

  16. Y. Jeong, C. Pearson, H-G. Kim, M-Y. Park, H. Kim, L-M. Do and M. C. Petty, RSC Adv. 5, 36083 (2015).

    Article  Google Scholar 

  17. S. Y. Park, S. Kim, J. Yoo, K-H. Lim, E. Lee, K. Kim, J. Kim and Y. S. Kim, RSC Adv. 4, 11295 (2014).

    Article  Google Scholar 

  18. J. H. Jun, B. Park, K. Cho and S. Kim, Nanotechnology 20, 505201 (2009).

    Article  ADS  Google Scholar 

  19. X. H. Ki, A. P. Huang, M. K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang and H. Yan, Mater. Lett. 57, 4655 (2003).

    Article  Google Scholar 

  20. M-C. Chu, J. S. Meena, P-T. Liu, H-P. D. Shieh, H-C. You, Y-W. Tu, F-C. Chang and F-H. Ko, App. Phys. Express 6, 076501 (2013).

    Article  ADS  Google Scholar 

  21. J. B. Coulter and D. P. Birnie, Phys. Status Solidi B 255, 1700393 (2017).

    Article  ADS  Google Scholar 

  22. M. Ohyama, H. Kozuka and T. Yoko, J. Am. Ceram. Soc. 81, 1622 (1998).

    Article  Google Scholar 

  23. D. K. Hwang et al., NPG Asia Mater. 8, e233 (2016).

    Article  Google Scholar 

  24. T. Jun, K. Song, Y. Jung, S. Jeong and J. Moon, J. Mater. Chem. 21, 13524 (2011).

    Article  Google Scholar 

  25. H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004).

    Article  ADS  Google Scholar 

  26. S. W. Shin, K-H. Lee, J-S. Park and S. J. Kang, ACS Appl. Mater. Interfaces 7, 19666 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, B.J., Kang, S.J. et al. Photocurrent Characteristics of Zinc-Oxide Films Prepared by Using Sputtering and Spin-Coating Methods. J. Korean Phys. Soc. 73, 1351–1355 (2018). https://doi.org/10.3938/jkps.73.1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1351

Keywords

Navigation