Skip to main content
Log in

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent Schrödinger equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer and K. C. Kulander, Phys. Rev. Lett. 73, 1227 (1994).

    Article  ADS  Google Scholar 

  2. B. Sheehy, R. Lafon, M. Widmer, B. Walker, L. F. Di- Mauro, P. A. Agostini and K. C. Kulander, Phys. Rev. A 58, 3942 (1998).

    Article  ADS  Google Scholar 

  3. M. Weckenbrock, D. Zeidler, A. Staudte, T. Weber, M. Schöffler, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D. M. Rayner, D. M. Villeneuve, P. B. Corkum and R. Dörner, Phys. Rev. Lett. 92, 213002 (2004).

    Article  ADS  Google Scholar 

  4. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer and J. Ullrich, Phys. Rev. Lett. 93, 253001 (2004).

    Article  ADS  Google Scholar 

  5. M. Schultze, M. Fieβ, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, T. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz and V. S. Yakovlev, Science 328, 1658 (2010).

    Article  ADS  Google Scholar 

  6. K. Miyazaki and H. Sakai, J. Phys. B: At. Mol. Opt. Phys. 25, L83 (1992).

    Article  ADS  Google Scholar 

  7. N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M. Watanabe and S. Watanabe, Phys. Rev. A 43, 1669 (1991).

    Article  ADS  Google Scholar 

  8. J. K. Crane, M. D. Perry, S. Herman and R. W. Falcone, Opt. Lett. 17, 1256 (1992).

    Article  ADS  Google Scholar 

  9. P. Agostini, F. Fabre, G. Mainfray, G. Petite and N. K. Rahman, Phys. Rev. Lett. 42, 1127 (1979).

    Article  ADS  Google Scholar 

  10. W. Nicklich, H. Kumpfmüller, H. Walther, X. Tang, H. Xu and P. Lambropoulos, Phys. Rev. Lett. 69, 3455 (1992).

    Article  ADS  Google Scholar 

  11. M. Bashkansky, P. H. Bucksbaum and D. W. Schumacher, Phys. Rev. Lett. 60, 2458 (1988).

    Article  ADS  Google Scholar 

  12. A. L’Huillier, L. A. Lompre, G. Mainfray and C. Manus, Phys. Rev. Lett. 48, 1814 (1982).

    Article  ADS  Google Scholar 

  13. A. L’Huillier, L. A. Lompre, G. Mainfray and C. Manus, Phys. Rev. A 27, 2503 (1983).

    Article  ADS  Google Scholar 

  14. D. N. Fittinghoff, P. R. Bolton, B. Chang and K. C. Kulander, Phys. Rev. Lett. 69, 2642 (1992).

    Article  ADS  Google Scholar 

  15. J. B. Watson, A. Sanpera, D. G. Lappas, P. L. Knight and K. Burnett, Phys. Rev. Lett. 78, 1884 (1997).

    Article  ADS  Google Scholar 

  16. R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander and L. F. DiMauro, Phys. Rev. Lett. 86, 2762 (2001).

    Article  ADS  Google Scholar 

  17. M. A. Lysaght, H. W. van der Hart and P. G. Burke, Phys. Rev. A 79, 053411 (2009).

    Article  ADS  Google Scholar 

  18. M. A. Lysaght, S. Hutchinson and H. W. van der Hart, New J. Phys. 11, 093014 (2009).

    Article  ADS  Google Scholar 

  19. P. G. Burke and V. M. Burke, J. Phys. B: At. Mol. Opt. Phys. 30, L383 (1997).

    Article  ADS  Google Scholar 

  20. L. A. A. Nikolopoulos, J. S. Parker and K. T. Taylor, Phys. Rev. A 78, 063420 (2008).

    Article  ADS  Google Scholar 

  21. L. Moore, M. Lysaght, L. Nikolopoulos, J. Parker, H. van der Hart and K. Taylor, J. Mod. Opt. 58, 1132 (2011).

    Article  ADS  Google Scholar 

  22. X. Guan, O. Zatsarinny, K. Bartschat, B. I. Schneider, J. Feist and C. J. Noble, Phys. Rev. A 76, 053411 (2007).

    Article  ADS  Google Scholar 

  23. X. Guan, C. J. Noble, O. Zatsarinny, K. Bartschat and B. I. Schneider, Phys. Rev. A 78, 053402 (2008).

    Article  ADS  Google Scholar 

  24. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  ADS  Google Scholar 

  25. I. Burghardt, H-D. Meyer and L. S. Cederbaum, J. Chem. Phys. 111, 2927 (1999).

    Article  ADS  Google Scholar 

  26. I. Burghardt, K. Giri and G. A. Worth, J. Chem. Phys. 129, 174104 (2008).

    Article  ADS  Google Scholar 

  27. S. Sawada, R. Heather, B. Jackson and H. Metiu, J. Chem. Phys. 83, 3009 (1985).

    Article  ADS  Google Scholar 

  28. G. A. Worth and I. Burghardt, Chem. Phys. Lett. 368, 502 (2003).

    Article  ADS  Google Scholar 

  29. D. V. Shalashilin and M. S. Child, Chem. Phys. 304, 103 (2004).

    Article  Google Scholar 

  30. D. V. Shalashilin and M. S. Child, J. Chem. Phys. 128, 054102 (2008).

    Article  ADS  Google Scholar 

  31. C. Symonds, J. Wu, M. Ronto, C. Zagoya, C. Figueira de Morisson Faria and D. V. Shalashilin, Phys. Rev. A 91, 023427 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  32. X. Kong, A. Markmann and V. S. Batista, J. Phys. Chem. A 120, 3260 (2016), pMID: 26845486.

    Article  Google Scholar 

  33. E. J. Heller, J. Chem. Phys. 62, 1544 (1975).

    Article  ADS  Google Scholar 

  34. J. Qian and L. Ying, J. Comput. Phys. 229, 7848 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  35. L. M. Andersson, J. Chem. Phys. 115, 1158 (2001).

    Article  ADS  Google Scholar 

  36. L. M. Andersson, J. berg, H. O. Karlsson and O. Goscinski, J. Phys. A: Math. Gen. 35, 7787 (2002).

    Article  ADS  Google Scholar 

  37. I. Daubechies, in Ten Lectures on Wavelets, Vol. 61 (SIAM, Philadelphia, 1992), Chap. 3.

  38. H. Bachau, E. Cormier, P. Decleva, J. E. Hansen and F. Martn, Rep. Prog. Phys. 64, 1815 (2001).

    Article  ADS  Google Scholar 

  39. J. Crank and P. Nicolson, Adv. Comput. Math. 6, 207 (1996).

    Article  MathSciNet  Google Scholar 

  40. K. Burnett, V. C. Reed, J. Cooper and P. L. Knight, Phys. Rev. A 45, 3347 (1992).

    Article  ADS  Google Scholar 

  41. A. Gordon, R. Santra and F. X. Kärtner, Phys. Rev. A 72, 063411 (2005).

    Article  ADS  Google Scholar 

  42. C. Zagoya, C-M. Goletz, F. Grossmann and J-M. Rost, New J. Phys. 14, 093050 (2012).

    Article  ADS  Google Scholar 

  43. J. Javanainen, J. H. Eberly and Q. Su, Phys. Rev. A 38, 3430 (1988).

    Article  ADS  Google Scholar 

  44. Q. Su and J. H. Eberly, Phys. Rev. A 44, 5997 (1991).

    Article  ADS  Google Scholar 

  45. G. G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos and H. Walther, Phys. Rev. Lett. 72, 2851 (1994).

    Article  ADS  Google Scholar 

  46. P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301 (2010).

    Article  ADS  Google Scholar 

  47. R. Dörner, T. Weber, M. Weckenbrock, A. Staudte, M. Hattass, H. Schmidt-Böcking, R. Moshammer and J. Ullrich, Adv. Atom. Mol. Opt. Phys. 48, 1 (2002).

    Article  ADS  Google Scholar 

  48. J. Thijssen, Computational Physics, 2nd ed. (Cambridge University Press, 2007).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MH., Byun, C.W., Choi, N.N. et al. Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics. J. Korean Phys. Soc. 73, 1269–1278 (2018). https://doi.org/10.3938/jkps.73.1269

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1269

Keywords

Navigation