Skip to main content
Log in

Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A Composite cathode without polymer binder was prepared by a one-step sintering method employing spark plasma sintering (SPS) of laminated LiCoO2 and Li3BO3 pellets. The amorphous Li3BO3 solid electrolyte melted during the sintering process. For better characterization of the composite cathode, a liquid electrolyte was used in the battery test. However, the active material was mainly in the all-solid-state environment. The specific capacity of the composite cathode was found to be dependent on its thickness. The 0.2 mm thick composite cathode showed a high specific discharge capacity of 99 mAh g −1 at 0.5 C rate, excellent cycling performance over 10 cycles, and good rate capability of about 93.2 mAh g −1 with 94% retention capacity. In addition, the composite cathode showed an initial discharge capacity of 0.25 mAh g −1. The discharge capacity after 3 cycles under the all-solid-state condition was 0.22 mAh g −1. The SEM and TEM results showed that the melted Li3BO3 solid electrolyte synthesized by the SPS process produced Li+ ion transport pathways, which reduced the grain boundary resistance. Hence, this composite cathode consisting of LiCoO2 as the cathode, amorphous Li3BO3 as the solid electrolyte, and MWCNT as the electric conductor is a promising material for all-solid-state batteries and bulk-type hybrid solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. M. Liu, Z. D. Huang, S. W. Oh, B. Zhang, P. C. Ma, M. M. F. Yuen and J. K. Kim, Compos. Sci. Technol. 72, 121 (2012).

    Article  Google Scholar 

  2. M. Tatsumisago, R. Takano, K. Tadanaga and A. Hayashi, J. Power Sources 270, 603 (2014).

    Article  ADS  Google Scholar 

  3. K. Chen, Y. Shen, Y. Zhang, Y. Lin and C. W. Nan, J. Power Sources 249, 306 (2014).

    Article  ADS  Google Scholar 

  4. I. Y. Kim, S. Y. Shin, J. H. Ko, K. S. Lee, S. P. Woo, D. K. Kim and Y. S. Yoon, J. Korean Ceram. Soc. 54, 9 (2017).

    Article  Google Scholar 

  5. J. S. Kim, H. S. Kim and K. S. Kang, J. Korean Ceram. Soc. 55, 21 (2018).

    Article  Google Scholar 

  6. K. Takada, Acta Mater. 61, 759 (2013).

    Article  Google Scholar 

  7. J. B. Bates, N. J. Dudney, B. Neudecker and A. Ueda, Solid State Ionics 135, 33 (2000).

    Article  Google Scholar 

  8. C. Julien, G. A. Nazri, J. P. Guesdon, A. Gorenstein, A. Khelfa and O. M. Hussain, Solid State Ionics 73, 319 (1994).

    Article  Google Scholar 

  9. K. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. J. Fisher, T. Hirayama, R. Murugan and Z. Ogumi, J. Power Sources 196, 764 (2011).

    Article  ADS  Google Scholar 

  10. B. Hung, X. Yao, Z. Huang, Y. Guan, Y. Kin and X. Xu, J. Power Source 284, 206 (2015).

    Article  ADS  Google Scholar 

  11. M. Hung, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin and C. W. Nan, Solid State Ionic 204–205, 41 (2011).

    Article  Google Scholar 

  12. M. Hara, H. Nakano, K. Dokko, S. Okuda, A. Kaeriyama and K. Kanamura, J. Power Sources 189, 485 (2009).

    Article  ADS  Google Scholar 

  13. H. Zhang, X. Yu and P. V. Braun, Nature Nano. 6, 277 (2011).

    Article  ADS  Google Scholar 

  14. R. Kali and A. Mukhopadhyay, J. Power Sources 247, 920 (2014).

    Article  ADS  Google Scholar 

  15. H. Kitaura, A. Hayasho, T. Ohtomo, S. Hama and M. Tatsumisago, J. Mater. Chem. 21, 118 (2011).

    Article  Google Scholar 

  16. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita and T. Asaoka, J. Power Sources 238, 53 (2013).

    Article  Google Scholar 

  17. L. Jinlian, W. Xianmaing, C. Shang, L. Jianben and H. Zeqiang, Bull. Mater. Sci. 36, 687 (2013).

    Article  Google Scholar 

  18. N. Kuwata, J. Kawamura, K. Toribami, T. Hattori and N. Sata, Electrochem. Commun. 6, 417 (2004).

    Article  Google Scholar 

  19. F. Croce, G. B. Appetecchi, L. Persi and B. Scrosati, Nature 394, 456 (1998).

    Article  ADS  Google Scholar 

  20. T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer and M. W. Mehrens, J. Power Sources 262, 129 (2014).

    Article  ADS  Google Scholar 

  21. E. D. Botto, C. Bourbon, S. Patoux, P. Rozier and M. Dolle, J. Power Sources 196, 2274 (2011).

    Article  Google Scholar 

  22. Y. Wu, D. Pasero, E. E. McCabem, Y. Matsushima and A. R. West, Proc. R. Soc. A 465, 1829 (2009).

    Article  ADS  Google Scholar 

  23. K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi and M. Tatsumisago, Electrochem. Commun. 33, 51 (2013).

    Article  Google Scholar 

  24. M. Kotobuki, Y. Suzuki, H. Munakata, K. Kanamura, Y. Sato, K. Yamamoto and T. Yoshida, J. Electrochem. Soc. 157, A493 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S.P., Lee, W. & Yoon, Y.S. Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries. J. Korean Phys. Soc. 73, 1019–1024 (2018). https://doi.org/10.3938/jkps.73.1019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1019

Keywords

Navigation