Skip to main content
Log in

Susceptibility of the Ising Model on a Kagomé Lattice by Using Wang-Landau Sampling

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The susceptibility of the Ising model on a kagomé lattice has never been obtained. We investigate the properties of the kagomé-lattice Ising model by using the Wang-Landau sampling method. We estimate both the magnetic scaling exponent yh = 1.90(1) and the thermal scaling exponent yt = 1.04(2) only from the susceptibility. From the estimated values of yh and yt, we obtain all the critical exponents, the specific-heat critical exponent α = 0.08(4), the spontaneous-magnetization critical exponent β = 0.10(1), the susceptibility critical exponent γ = 1.73(5), the isothermalmagnetization critical exponent δ = 16(4), the correlation-length critical exponent ν = 0.96(2), and the correlation-function critical exponent η = 0.20(4), without using any other thermodynamic function, such as the specific heat, magnetization, correlation length, and correlation function. One should note that the evaluation of all the critical exponents only from information on the susceptibility is an innovative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Syozi, Prog. Theo. Phys. 6, 306 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Mekata, Physics Today 56, 12 (2003). and references therein.

    Article  Google Scholar 

  3. V. Elser, Phys. Rev. Lett. 62, 2405 (1989).

    Article  ADS  Google Scholar 

  4. J. L. Atwood, Nature Mater. 1, 91 (2002). and references therein.

    Article  ADS  Google Scholar 

  5. Q. Chen, S. C. Bae and S. Granick, Nature 469, 306 (2011).

    Article  Google Scholar 

  6. K. S. Khalil, A. Sagastegui, Y. Li, M. A. Tahir, J. E. S. Socolar, B. J. Wiley and B. B. Yellen, Nature Commun. 3, 794 (2012).

    Article  ADS  Google Scholar 

  7. Y. Zong et al., Optics Express 24, 8877 (2016). and references therein.

    Article  ADS  Google Scholar 

  8. I. Syozi, Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic Press, New York, 1972), Vol. 1, p. 269.

    Google Scholar 

  9. K. Kano and S. Naya, Prog. Theor. Phys. 10, 158 (1953).

    Article  ADS  Google Scholar 

  10. S. Naya, Prog. Theor. Phys. 11, 53 (1954).

    Article  ADS  Google Scholar 

  11. A. J. Guttmann, J. Phys. A 10, 1911 (1977).

    Article  ADS  Google Scholar 

  12. H. Giacomini, J. Phys. A 21, L31 (1988).

    Article  ADS  Google Scholar 

  13. K. Y. Lin, J. Phys. A 22, 3435 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Domb, The Critical Point (Taylor and Francis, London, 1996), and references therein.

    Google Scholar 

  16. J. Cardy, Finite-Size Scaling (North-Holland, Amsterdam, 1988), Vol. 1.

  17. G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).

    Article  ADS  Google Scholar 

  18. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Article  ADS  Google Scholar 

  19. W. Kwak and U. H. E. Hansman, Phys. Rev. Lett. 95, 138102 (2005).

    Article  ADS  Google Scholar 

  20. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).

    Article  ADS  Google Scholar 

  21. B. A. Berg, Int. J. Mod. Phys. C 4, 249 (1993).

    Article  ADS  Google Scholar 

  22. F. Eisenmenger, U. H. E. Hansmann, Sh. Hayryan and C. K. Hu, Comp. Phys. Comm. 138, 192 (2001).

    Article  ADS  Google Scholar 

  23. F. Eisenmenger, U. H. E. Hansmann, S. Hayryan and C-K. Hu, Comp. Phys. Comm. 174, 422 (2006).

    Article  ADS  Google Scholar 

  24. David P. Landau, Monte-Carlo Simulations in Statistical Physics, 3rd ed. (Cambridge, New York, 2009)

    Book  MATH  Google Scholar 

  25. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  26. D. P. Landau, S-H. Tsai and M. Exler, Am. J. Phys. 72, 1294 (2004).

    Article  ADS  Google Scholar 

  27. B. J. Schulz, K. Binder, M. Müller and D. P. Landau, Phys. Rev. E 67, 067102 (2003).

    Article  ADS  Google Scholar 

  28. M. Scott Shell, P. G. Debenedetti and A. Z. Panagiotopoulos, Phys. Rev. E 66, 056703 (2002).

    Article  ADS  Google Scholar 

  29. C. Zhou, T. C. Schulthess, S. Torbrügge and D. P. Landau, Phys. Rev. Lett. 96, 120201 (2006).

    Article  ADS  Google Scholar 

  30. C. Yamaguchi and Y. Okabe, J. Phys. A: Math. Gen. 34, 8781 (2001).

    Article  ADS  Google Scholar 

  31. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).

    Article  ADS  Google Scholar 

  32. T. S. Jain and J. J. de Pablo, J. Chem. Phys. 118, 4226 (2003).

    Article  ADS  Google Scholar 

  33. Q. L. Yan, R. Faller and J. J. de Pablo, J. Chem. Phys. 116, 8745 (2002).

    Article  ADS  Google Scholar 

  34. N. Rathore, T. A. Knotts and J. J. de Pablo, J. Chem. Phys 118, 4285 (2003).

    Article  ADS  Google Scholar 

  35. J-S. Yang and W. Kwak, Comput. Phys. Comm. 179, 179 (2008).

    Google Scholar 

  36. F. Calvo, Mol. Phys. 100, 3421 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooseop Kwak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Kwak, W. Susceptibility of the Ising Model on a Kagomé Lattice by Using Wang-Landau Sampling. J. Korean Phys. Soc. 72, 653–657 (2018). https://doi.org/10.3938/jkps.72.653

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.653

Keywords

Navigation