Skip to main content
Log in

Molar Heat Capacity of Potassium Alum KAl(SO4)2 ·12H2O at Low Temperatures: Revisited with Determination of the Debye Temperature

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Two earlier published experimental data [C. H. Shomate, J. Am. Chem. Soc. 67, 765 (1945); D. G. Kapadnis and R. Hartmans, Physica 22, 173 (1956)] of the molar heat capacity C p of potassium alum, KAl(SO4)2·12H2O, are revisited. From analysis of the temperature dependence of C p [D. G. Kapadnis and R. Hartmans, Physica 22, 173 (1956)] below 20 K by using the experimental values of C p represented as a plot of C p /T = γ+AT2, the Sommerfeld parameter γ (electronic heat capacity coefficient) and the slope A (lattice heat capacity coefficient) are estimated as γ = 0 JK −2mol −1 and A = 3.35×10 −3 JK −4mol −1, respectively. This indicates that only acoustic phonons contribute to the heat capacity below 4 K. The Debye T3-law is found to hold good to 4 K, i.e., to T < θ D /20, where θ D is the calorimetric Debye temperature calculated as θ D = 83.4 K, indicative of the strength of the chemical bonding in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Haussühl, Z. Kristallogr. 116, 371 (1961).

    Article  Google Scholar 

  2. F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press, New York, 1962), p. 324.

    Google Scholar 

  3. H. Lipson and C. A. Beevers, Proc. Roy. Soc. A 148, 664 (1935).

    Article  ADS  Google Scholar 

  4. H. Lipson, Proc. Roy. Soc. A 151, 347 (1935).

    Article  ADS  Google Scholar 

  5. A. C. Larson and D. T. Cromer, Acta Crystallogr. 22, 793 (1967).

    Article  Google Scholar 

  6. S. C. Nyburg, J. W. Steed, S. Aleksovska and V. M. Petrusevski, Acta Crystallogr. B 56, 204 (2000).

    Article  Google Scholar 

  7. E. Baud, J. Phys. Theor. Appl. 2, 569 (1903).

    Article  Google Scholar 

  8. J. Dewer, Proc. Roy. Soc., London, Ser. A 76, 325 (1905).

    Article  ADS  Google Scholar 

  9. W. Nernst and F. Schwers, Preussischen Akad. Wiss. 1914, 355 (1914).

    Google Scholar 

  10. C. H. Shomate, J. Am. Chem. Soc. 67, 765 (1945).

    Article  Google Scholar 

  11. D. G. Kapadnis and R. Hartmans, Physica 22, 173 (1956).

    Article  ADS  Google Scholar 

  12. G. Burns, J. Chem. Phys. 32, 1585 (1960).

    Article  ADS  Google Scholar 

  13. H. H. Eysel and J. Eckert, Z. Anorg. Allg. Chem. 424, 68 (1976).

    Article  Google Scholar 

  14. J. Eckert, H. H. Eysel and G. L. Kampffmeyer, Z. Anorg. Allg. Chem. 424, 81 (1976).

    Article  Google Scholar 

  15. H. H. Eysel and G. Schumacher, Chem. Phys. Lett. 47, 168 (1977).

    Article  ADS  Google Scholar 

  16. M. H. Brooker and H. H. Eysel, J. Phys. Chem. 94, 540 (1990).

    Article  Google Scholar 

  17. A. K. Sood, A. K. Arora, S. Dattagupta and G. Venkataraman, J. Phys. C: Solid State Phys. 14, 5215 (1981).

    Article  ADS  Google Scholar 

  18. K. Bielecki, Z. Kruczyński and S. I. Fărcaş, Phys. Status Solidi (b) 141, K67 (1987).

    Article  ADS  Google Scholar 

  19. J. A. MacKinnon and M. Shannon, Can. J. Phys. 53, 841 (1975).

    Article  ADS  Google Scholar 

  20. D. Brach, P. Glaremin and H-J. Weber, Phys. Status Solidi (b) 156, 195 (1989).

    Article  ADS  Google Scholar 

  21. H-J. Weber, Z. Kristallogr. 209, 71 (1994).

    Google Scholar 

  22. C. Kittel, Introduction to solid state physics, 7th edition (John Wiley & Sons, New York, 1996), Chap. 5.

    Google Scholar 

  23. E. S. R. Gopal, Specific heats at low temperatures (Plenum Press, New York, 1966).

    Book  Google Scholar 

  24. T. H. K. Barron and G. K. White, Heat capacity and thermal expansion at low temperatures (Springer, New York, 1999).

    Book  Google Scholar 

  25. A. Tari, The specific heat of matter at low temperatures (Imperial College Press, London, 2003).

    Book  Google Scholar 

  26. S. Stolen, T. Grande and N. L. Allan, Chemical thermodynamics of materials: Macroscopic and microscopic aspects (John Wiley & Sons, New York, 2004), Chap. 8.

    Google Scholar 

  27. Y. Miyazaki, M. Sorai, R. Lin, A. Dworkin, H. Szwarc and J. Godard, Chem. Phys. Lett. 305, 293 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Eui Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KS., Lee, C.E. Molar Heat Capacity of Potassium Alum KAl(SO4)2 ·12H2O at Low Temperatures: Revisited with Determination of the Debye Temperature. Journal of the Korean Physical Society 72, 379–383 (2018). https://doi.org/10.3938/jkps.72.379

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.379

Keywords

Navigation