Skip to main content
Log in

Subleading hadronic vacuum polarization contributions to muon g − 2: μ+μγ* → π0γ*

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We consider the subleading contributions of the hadronic vacuum polarization, involving the π0γ*γ* transition form factor, to the muon anomalous magnetic moment g − 2. Various models for the form factor, based on hadronic ansatzes and holographic principles, are considered: They are the Wess-Zumino-Witten, vector meson dominance, lowest meson dominance (one and two vector resonances), and anti-de Sitter/quantum chromodynamics (AdS/QCD) models. The model parameters are determined by fitting the experimental data for the e+eπ0γ total cross section. We report the following numerical result for the corrections to the muon g − 2: the resulting values of two vector resonances model are one order-of-magntitude smaller than the one obtained from the dispersion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Jegerlehner and A. Nyffeler, Phys. Rept. 477, 1 (2009). doi:10.1016/j.physrep.2009.04.003 [arXiv:0902. 3360 [hep-ph]].

    Article  ADS  Google Scholar 

  2. C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016). doi:10.1088/1674-1137/40/10/100001

    Article  ADS  Google Scholar 

  3. F. Jegerlehner, arXiv:1705.00263 [hep-ph].

  4. D. W. Hertzog, EPJ Web Conf. 118, 01015 (2016). doi:10.1051/epjconf/201611801015 [arXiv:1512.00928 [hep-ex]].

    Article  Google Scholar 

  5. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Phys. Rev. Lett. 109, 111808 (2012). doi:10.1103/Phys RevLett.109.111808 [arXiv:1205.5370 [hep-ph]].

    Article  ADS  Google Scholar 

  6. C. Gnendiger, D. Stckinger and H. Stckinger-Kim, Phys. Rev. D 88, 053005 (2013). doi:10.1103/PhysRev D.88.053005 [arXiv:1306.5546 [hep-ph]].

    Article  ADS  Google Scholar 

  7. M. Della Morte,_B. Jager, A. Juttner and H. Wittig, JHEP 1203, 055 (2012). doi:10.1007/JHEP03(2012)055 [arXiv:1112.2894 [hep-lat]].

    ADS  Google Scholar 

  8. P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Phys. Rev. D 85, 074504 (2012). doi:10.1103/PhysRevD.85.074504 [arXiv:1107.1497 [hep-lat]].

    Article  ADS  Google Scholar 

  9. F. Burger et al. [ETM Collaboration], JHEP 1402, 099 (2014). doi:10.1007/JHEP02(2014)099 [arXiv:1308.4327 [hep-lat]].

    Article  ADS  Google Scholar 

  10. T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Phys. Rev. Lett. 114, 012001 (2015). doi:10.1103/PhysRevLett.114.012001 [arXiv:1407.2923 [hep-lat]].

    Article  ADS  Google Scholar 

  11. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin and C. Lehner, Phys. Rev. D 93, 014503 (2016). doi:10.1103/PhysRevD.93.014503 [arXiv:1510.07100 [hep-lat]].

    Article  ADS  Google Scholar 

  12. B. Chakraborty, C. T. H. Davies, P. G. de Oliviera, J. Koponen, G. P. Lepage and R. S. Van de Water, Phys. Rev. D 96, 034516 (2017). doi:10.1103/PhysRevD.96.034516 [arXiv:1601.03071 [hep-lat]].

    Article  ADS  Google Scholar 

  13. S. Borsanyi et al. [Budapest-Marseille-Wuppertal Collaboration], arXiv:1711.04980 [hep-lat].

  14. M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034 (2002). doi:10.1103/PhysRevD.65.073034 [hepph/ 0111058].

    Article  ADS  Google Scholar 

  15. A. Nyffeler, Phys. Rev. D 94, 053006 (2016). doi:10.1103/PhysRevD.94.053006 [arXiv:1602.03398 [hep-ph]].

    Article  ADS  Google Scholar 

  16. D. K. Hong and D. Kim, Phys. Lett. B 680, 480 (2009). doi:10.1016/j.physletb.2009.09.026 [arXiv:0904.4042 [hep-ph]].

    Article  ADS  Google Scholar 

  17. D. K. Hong, D. Kim and S. Matsuzaki, Phys. Rev. D 81, 073005 (2010). doi:10.1103/PhysRevD.81.073005” [arXiv:0911.0560 [hep-ph]].

    Article  ADS  Google Scholar 

  18. L. Cappiello, O. Cata and G. D’Ambrosio, Phys. Rev. D 83, 093006 (2011). doi:10.1103/PhysRevD.83.093006 [arXiv:1009.1161 [hep-ph]].

    Article  ADS  Google Scholar 

  19. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, arXiv:1706.09436 [hep-ph].

  20. T. Blum, Phys. Rev. Lett 91, 052001 (2003). doi:10.1103/PhysRevLett.91.052001 [hep-lat/0212018].

    Article  ADS  Google Scholar 

  21. E. de Rafael, Phys. Lett. B 322, 239 (1994). doi:10.1016/0370-2693(94)91114-2 [hep-ph/9311316].

    Article  ADS  Google Scholar 

  22. S. L. Adler, Phys. Rev. 177, 2426 (1969). doi:10.1103/PhysRev.177.2426.

    Article  ADS  Google Scholar 

  23. J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969). doi:10.1007/BF02823296.

    Article  ADS  Google Scholar 

  24. G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979). doi:10.1016/0370-2693(79)90554-9.

    Article  ADS  Google Scholar 

  25. G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980). doi:10.1103/PhysRevD.22.2157.

    Article  ADS  Google Scholar 

  26. S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808 (1981). doi:10.1103/PhysRevD.24.1808.

    Article  ADS  Google Scholar 

  27. V. A. Novikov, M. A. Shifma, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Nucl. Phys. B 237, 525 (1984). doi:10.1016/0550-3213(84)90006-3.

    Article  ADS  Google Scholar 

  28. B. Moussallam, Phys. Rev. D 51, 4939 (1995). doi:10.1103/PhysRevD.51.4939 [hep-ph/9407402].

    Article  ADS  Google Scholar 

  29. M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Phys. Rev. Lett. 83, 5230 (1999). doi:10.1103/PhysRevLett.83.5230 [hep-ph/9908283].

    Article  ADS  Google Scholar 

  30. M. Knecht and A. Nyffeler, Eur. Phys. J. C 21, 659 (2001). doi:10.1007/s100520100755 [hep-ph/0106034].

    Article  ADS  Google Scholar 

  31. K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004). doi:10.1103/PhysRevD.70.113006, [hepph/ 0312226].

    Article  ADS  Google Scholar 

  32. A. Grardin, H. B. Meyer and A. Nyffeler, Phys. Rev. D 94, 074507 (2016). doi:10.1103/PhysRevD.94.074507 [arXiv:1607.08174 [hep-lat]].

    Article  ADS  Google Scholar 

  33. H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 77, 115024 (2008). doi:10.1103/PhysRevD.77.115024 [arXiv:0803.1143 [hep-ph]].

    Article  ADS  Google Scholar 

  34. H. R. Grigoryan and A. V. Radyushkin, Phys. Lett. B 650, 421 (2007). doi:10.1016/j.physletb.2007.05.044 [hep-ph/079].

    Article  ADS  Google Scholar 

  35. S. Hong, S. Yoon and M. J. Strassler, JHEP 04, 003 (2006). doi:10.1088/1126-6708/2006/04/003 [hepth/ 0409118].

    Article  ADS  Google Scholar 

  36. M. N. Achasov et al. Phys. Rev. D 93, 092001 (2016). doi:10.1103/PhysRevD.93.092001 [arXiv:1601.08061 [hep-ex]].

    Article  ADS  Google Scholar 

  37. V. B. Berestetskii, O. N. Krokhin and A. K. Khelbnikov, JETP 3, 761 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D.K., Kim, D.H. & Lee, JW. Subleading hadronic vacuum polarization contributions to muon g − 2: μ+μγ* → π0γ*. Journal of the Korean Physical Society 72, 221–227 (2018). https://doi.org/10.3938/jkps.72.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.221

Keywords

Navigation