Skip to main content
Log in

Facile Dry Surface Cleaning of Graphene by UV Treatment

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo and A. T. C. Johnson, Nano. Lett. 9, 1472 (2009).

    Article  ADS  Google Scholar 

  2. W. Yuan and G. Shi, J. Mater. Chem. A. 1, 10078 (2013).

    Article  Google Scholar 

  3. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg and R. S. Ruoff, ACS. Nano 5, 6916 (2011).

    Article  Google Scholar 

  4. W. Choi, M. A. Shehzad, S. Park and Y. Seo, RSC. Adv. 7, 6943 (2017).

    Article  Google Scholar 

  5. S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn and L. E. Brus, Nano Lett. 10, 4944 (2010).

    Article  ADS  Google Scholar 

  6. A. Prikle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).

    Article  ADS  Google Scholar 

  7. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang and U. Fang, Nano Lett. 11, 767 (2011).

    Article  ADS  Google Scholar 

  8. Y. Mulyana, M. Uenuma, Y. Ishikawa and Y. Uraoka, J. Phys. Chem. Lett. C 118, 27372 (2014).

    Article  Google Scholar 

  9. H. V. Ngoc Y. Qian, S. K. Han and D. J. Kang, Sci. Rep. 6, 33096 (2016).

    Article  ADS  Google Scholar 

  10. A. Das et al., Nat. Nanotech. 3, 210 (2008).

    Article  Google Scholar 

  11. J. R. Vig, J. Vac. Sci. Technol. A 3, 1027 (1985).

    Article  ADS  Google Scholar 

  12. S. Baunack and A. Zehe, Phys. Status solidi A-Appl. Mat. 115, 223 (1989).

    Article  ADS  Google Scholar 

  13. W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. HightWalker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach and X. Liang, Appl. Phys. Lett. 102, 183110 (2013).

    Article  ADS  Google Scholar 

  14. C. W. Jang, J. H. Kim, J. M. Kim, D. H. Shin, S. Kim and S. H. Choi, Nanotechnology 24, 405301 (2013).

    Article  Google Scholar 

  15. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 324, 1312 (2009).

    Article  ADS  Google Scholar 

  16. H. H. Kim, S. K. Lee, S. G. Lee, E. H. Lee and K. Cho, Adv. Funct. Mater. 26, 2070 (2016).

    Article  Google Scholar 

  17. G. H. Lee et al., Science 340, 1073 (2013).

    Article  ADS  Google Scholar 

  18. P. Y. Huang et al., Nature 469, 389 (2011).

    Article  ADS  Google Scholar 

  19. W. Wei, C. Yang, J. Mai, L. Yan, K. Zhao, H. Ning, S. Wu, J. Gao, X. Gao, G. Zhou, X. Lu and J. M. Liu, J. Mater. Chem. C 5, 10652 (2017).

    Article  Google Scholar 

  20. S. K. Kwon and D. H. Kim, Trans. Electr. Electron. Mater. 17, 204 (2016).

    Article  Google Scholar 

  21. J. H. Bong, O. Sul, A. Yoon, S. Y. Choi and B. J. Cho, Nanoscale 6, 8503 (2014).

    Article  ADS  Google Scholar 

  22. Z. Xu, Z. Ao, D. Chu, A. Younis, C. M. Li and S. Li, Sci. Rep. 4, 6450 (2014).

    Article  ADS  Google Scholar 

  23. F. Banhart, J. Kotakoski and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

    Article  Google Scholar 

  24. X. Wang and H. Dai, Nat. Chem. 2, 661 (2010).

    Article  Google Scholar 

  25. D. C. Kim, D. Y. Jeon, H. J. Chung, Y. S. Woo, J. K. Shin and S. Seo, Nanotechnology 20, 375703 (2009).

    Article  Google Scholar 

  26. I. Childres, L. A Jauregui, J. Tian and Y. P Chen, New J. Phys. 13, 025008 (2011).

    Article  ADS  Google Scholar 

  27. F. Schwierz, Nat. nanotechnol. 5, 487 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sik Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Haidari, M.M., Choi, J.S. et al. Facile Dry Surface Cleaning of Graphene by UV Treatment. J. Korean Phys. Soc. 72, 1045–1051 (2018). https://doi.org/10.3938/jkps.72.1045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1045

Keywords

Navigation