Skip to main content
Log in

Dynamical behaviors of multifractal strengths in meteorological factors

  • Brief Reports
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we study the multifractal properties of cloud observation time-series data in Daegwanryung, Korea, containing two meteorological factors, the effective radius of a cloud droplet and the average particle size of a raindrop. We simulate and analyze the generalized Hurst exponent, the Renyi exponent, the spectrum, and the multifractal strength by using the multifractal detrended fluctuation analysis method. The result obtained may have a useful and effective influences on determining the observation location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vicsek, Fractal Growth Phenomena (World Scientifc, Singapore, 1992).

    Book  MATH  Google Scholar 

  2. A. Bunde and S. Havlin, Fractals and Disordered Systems (Springer, Berlin, 1996).

    Book  MATH  Google Scholar 

  3. H. E. Stanley, L. A. N. Amaral, A. L. Goldberger, S. Havlin, P. Ch. Ivanov and C. K. Peng, Physica A 270, 309 (1999).

    Article  ADS  Google Scholar 

  4. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. E. Stanley and P. Meakin, Nature 35, 405 (1988).

    Article  ADS  Google Scholar 

  6. S. Lovejoy and D. Schertzer, The weather and climate: emergent laws and multifractal cascades (Cambridge University Press, Cambridge, 2013).

    Book  Google Scholar 

  7. J. P. Bouchaud, M. Potters and M. Meyer, Eur. Phys. J. B 13, 595 (2000).

    ADS  Google Scholar 

  8. E. Bacry, J. Delour and J. F. Muzy, Physica A 299, 84 (2001).

    Article  ADS  Google Scholar 

  9. A. L. Barabasi and R. Albert, Science 286, 509 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  10. K. I. Goh, E. Oh, H. Jeong, B. Kahng and D. Kim, Proc. Natl. Acad. Sci. USA 99, 12583 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

    Article  ADS  Google Scholar 

  12. J. E. Barrios-Vargas and G. G. Naumis, arXiv:1306.666 5v1, 2013.

  13. Y. Y. Atas and E. Bogomolny, arXiv:1205.4541v1, 2012.

  14. A. D. Mirlin and F. Evers, Phys. Rev. B 62, 7920 (2000).

    Article  ADS  Google Scholar 

  15. C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. 224, 429 (1991).

    Article  ADS  Google Scholar 

  16. D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya and D. Marsan, Fractals 5, 427 (1997).

    Article  MathSciNet  Google Scholar 

  17. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1988).

    MATH  Google Scholar 

  18. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  19. H. G. E. Hentschel and I. Procaccia, Physica D 8, 435 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1983).

    MATH  Google Scholar 

  21. B. B. Mandelbrot, P. Pfeifer, O. Biham, O. Malcai, D. A. Lidar and D. Avnir, Science 279, 783 (1998).

    Article  ADS  Google Scholar 

  22. M. Barnsley, Fractals everywhere (Academic Press, San Francisco, 1988).

    MATH  Google Scholar 

  23. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Tel, Z. Naturforsch 43a, 1154 (1988).

    ADS  Google Scholar 

  25. J. D. Farmer, Z. Naturforsch 37a, 1304 (1982).

    ADS  Google Scholar 

  26. V. J. Martinez, S. Paredes, S. Borgani and P. Coles, Science 269, 1245 (1998).

    Article  ADS  Google Scholar 

  27. J. W. Kantelhardt, S. A. Zschiegner, E. K. Bunde, S. Havlin, A. Bunde and H. E. Stanley, Physica A 316, 87 (2002).

    Article  ADS  Google Scholar 

  28. Z. Eisler, J. Kertesz, S. H. Yook and A. L. Barabasi, Europhys. Lett. 69, 664 (2005).

    Article  ADS  Google Scholar 

  29. Z. Eisler and J. Kertesz, Europhys. Lett. 77, 28001 (2007).

    Article  ADS  Google Scholar 

  30. Z. Q. Jiang, L. Guo and W. X. Zhou, Eur. Phys. J. B 57, 347 (2007).

    Article  ADS  Google Scholar 

  31. J. Alvarez-Ramirez, M. Cisneros, C. Ibarra-Valdez and A. Soriano, Physica A 313, 651 (2002).

    Article  ADS  Google Scholar 

  32. M. Balcilar, Emerging Markets Fin. Trade 39, 5 (2003).

    Google Scholar 

  33. J. W. Lee, K. E. Lee and P. A. Rikvold, Physica A 364, 355 (2006).

    Article  ADS  Google Scholar 

  34. Z. Q. Jiang and W. X. Zhou, Physica A 381, 343 (2007).

    Article  ADS  Google Scholar 

  35. G. F. Gu, W. Chen and W. X. Zhou, Eur. Phys. J. B 57, 81 (2007).

    Article  ADS  Google Scholar 

  36. X. T. Zhuang and Y. Yuan, Physica A 387, 511 (2008).

    Article  ADS  Google Scholar 

  37. G. X. Du and X. X. Ning, Physica A 387, 261 (2008).

    Article  ADS  Google Scholar 

  38. Z. R. Struzik and A. P. J. M. Siebes, Physica A 309, 388 (2002).

    Article  ADS  Google Scholar 

  39. A. Turiel and C. J. Perez-Vicente, Physica A 322, 629 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Turiel and C. J. Perez-Vicente, Physica A 355, 475 (2005).

    Article  ADS  Google Scholar 

  41. P. Oswiecimka, J. Kwapien, S. Drozdz and R. Rak, Acta Physica Polonica B 36, 2447 (2005).

    ADS  Google Scholar 

  42. S. Y. Kim, G. Lim, K. H. Chang, J. W. Jung, K. Kim and C. H. Park, J. Korean Phys. Soc. 52, 566 (2008).

    Google Scholar 

  43. D. I. Lee, C. H. You, S. Y. Kim, I. H. Park and K. Kim, J. Korean Phys. Soc. 55, 2344 (2009).

    Article  ADS  Google Scholar 

  44. S. K. Seo, K. Kim, K. H. Chang, Y. J. Choi, K. Song and J. K. Park, J. Korean Phys. Soc. 61, 658 (2012).

    Article  ADS  Google Scholar 

  45. S. K. Seo, K. Kim, K. H. Chang, J. H. Lee, B. J. Kim and J. K. Park, J. Korean Phys. Soc. 65, 125 (2014).

    Article  ADS  Google Scholar 

  46. M. Löffler-Mang and J. Joss, J. Atmos. Oceanic Technol. 17, 130 (2000).

    Article  ADS  Google Scholar 

  47. S. E. Yuter, D. E. Kingsmill, L. B. Nance and M. Löffler-Mang, J. Appl. Meteor. Climatol. 45, 1450 (2000).

    Article  Google Scholar 

  48. M. Ausloos, Phys. Rev. E 86, 031108 (2012).

    Article  ADS  Google Scholar 

  49. M. Cencini, F. Cencini and A. Vulpiani, Chaos: From Models to Complex Systems (World Scientific, Singapore, 2010).

    MATH  Google Scholar 

  50. G. Parasi and U. Frisch, in Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by P. Huerre and P. Coullet (Plenum, New York, 1988).

  51. S. Kumar, M. Cuntz and Z. E. Musielak, arXiv:1402.3243v4, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Ho Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, CH., Seo, S.K., Chang, KH. et al. Dynamical behaviors of multifractal strengths in meteorological factors. Journal of the Korean Physical Society 70, 325–329 (2017). https://doi.org/10.3938/jkps.70.325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.325

Keywords

Navigation