Skip to main content
Log in

Simulation of residual stress and its impact on a poly-silicon channel for three-dimensional, stacked, vertical-NAND flash memories

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this work, we present the results of an investigation of the impact of the stress on a poly-silicon channel induced by the neighboring layers in three-dimensional vertical NAND (3D V-NAND) flash memories. Using 3D process simulations, we confirmed the distributions of the residual stress after each process step in the cross-section of a NAND flash unit cell. To investigate the impact of the stress on the poly-silicon channel, we also studied the residual stress after changing the intrinsic stresses of the oxide-nitride-oxide (ONO) layer and the tungsten layer used as a gate. We found that the amplitude of the residual stress in the applied layer became larger as the intrinsic stress increased. In addition, the intrinsic tensile/compressive stresses in the outer layers affected the residual stresses of the previously deposited layers in an opposite nature of the stresses. The cylindrical poly-silicon channel was influenced by the intrinsic stresses of the oxide layers adjacent to the nitride and the tungsten films, with the intrinsic stress of the tunnel oxide having the greater effect on the residual stress in the channel. Because such stresses affect the electrical properties of the devices, optimized deposition conditions are required to control them. Such conditions would aid in improving the performances of 3D NAND flash memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata et al., in Proceedings of the 2007 IEEE Symposium on VLSI Technology (Kyoto, Japan, June 12 - 14, 2007), p. 14.

    Book  Google Scholar 

  2. Y. H. Hsiao, H. T. Lue, W. C. Chen, C. P. Chen, K. P. Chang, Y. H. Shih, B. Y. Tsui and C. Y. Lu, in Proceedings of the 2012 IEEE International Electron Devices Meeting (San Francisco, CA, USA, December 10 - 13, 2012), p. 26.7.1.

    Google Scholar 

  3. S. M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. Kim, Y. Rah, Y. Son et al., in Proceedings of the 2006 IEEE International Electron Devices Meeting (San Francisco, CA, USA, December 11 - 13, 2006), p. 1.

    Google Scholar 

  4. J. Jang, H. S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. H. Jeong, B. K. Son et al., in Proceedings of the 2009 IEEE Symposium on VLSI Technology (Kyoto, Japan, June 15 - 17, 2009), p. 192.

    Google Scholar 

  5. W. Cho, S. I. Shim, J. Jang, H. Cho, B. K. You, B. K. Son, K. Kim, J. J. Shim, C. Park et al., in Proceedings of the 2010 IEEE Symposium on VLSI Technology (Honolulu, Hawaii, USA, June 15 - 17, 2010), p. 173.

    Book  Google Scholar 

  6. D. Kang, W. Jeong, C. Kim, D. H. Kim, Y. S. Cho, K. T. Kang, J. Ryu, K. M. Kang, S. Lee et al., in Proceedings of the 2016 IEEE International Solid-State Circuits Conference (San Francisco, CA, USA, January 31 - February 4, 2016), p. 130.

    Book  Google Scholar 

  7. N. Serra and D. Esseni, IEEE Trans. Electron Devices 57, 482 (2010).

    Article  ADS  Google Scholar 

  8. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass et al., IEEE Trans. Electron Devices 51, 1790 (2004).

    Article  ADS  Google Scholar 

  9. S. E. Thompson, G. Sun, Y. S. Choi and T. Nishida, IEEE Trans. Electron Devices 53, 1010 (2006).

    Article  ADS  Google Scholar 

  10. P. K. Nag, K. Tripathi and C. B. Pawar, Basic Mechanical Engineering (BE 204) (Tata McGraw-Hill, New Delhi, 2009), p. 1.2.

    Google Scholar 

  11. M. Ohring, Material Science of Thin Films, Deposition and Structure, 2nd ed. (Academic Press, San Diego, CA, 2002), p. 405.

    Google Scholar 

  12. Synopsys Inc., SentaurusTM Process User Guide K-2015.06 (Synopsys Inc., Mountain View, CA, 2015), p. 1.

    Google Scholar 

  13. M. T. Kim, Thin Solid Films 283, 12 (1996).

    Article  ADS  Google Scholar 

  14. H. O. Pierson, Handbook of Chemical Vapor Deposition (CVD), Second Edition (Noyes Publications, Norwich, New York, 1999), p. 281.

    Google Scholar 

  15. R. Vepa, Dynamics of Smart Structures (Wiley, Chichester, 2010), p. 141.

    Book  Google Scholar 

  16. W. N. Sharpe, Jr., Springer Handbook of Experimental Solid Mechanics (Springer, New York, 2008), p. 207.

    Book  Google Scholar 

  17. K. W. Ang, K. J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra and Y. C. Yeo, in Proceedings of the 2004 IEEE International Electron Devices Meeting (San Francisco, CA, USA, December 13 - 15, 2004), p. 1069.

    Book  Google Scholar 

  18. R. F. Wolffenbuttel, Silicon Sensors and Circuits: On-Chip Compatibility (Springer, The Netherlands, 1995), p. 131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Heub Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KB., Oh, YT. & Song, YH. Simulation of residual stress and its impact on a poly-silicon channel for three-dimensional, stacked, vertical-NAND flash memories. Journal of the Korean Physical Society 70, 1041–1048 (2017). https://doi.org/10.3938/jkps.70.1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.1041

Keywords

Navigation