Skip to main content
Log in

U(1) chiral symmetry in a one-dimensional interacting electron system with spin

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Bell and R. Jackiw, Il Nuovo Cimento A 60, 47 (1969).

    Article  ADS  Google Scholar 

  2. S. L. Adler, Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  3. C. Bouchiat, J. Iliopoulos and P. Meyer, Phys. Lett. B 38, 519 (1972).

    Article  ADS  Google Scholar 

  4. P. van Nieuwenhuizen, Anomalies in quantum field theory: Cancellation of anomalies in d = 10 supergravity, Leuven Notes in Math. and Theor. Phys., vol 3 (Leuven University Press, Leuven, 1989).

    MATH  Google Scholar 

  5. A. Schwartz, Phys. Lett. B 67, 172 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Atiyah, N.Hitchin and I. Singer, Proc. Nat. Acad. Sci. 74, 2662 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Tomogana, Prog. Theor. Phys. 5, 544 (1950).

    Article  ADS  Google Scholar 

  8. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  9. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).

    Article  ADS  Google Scholar 

  10. C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).

    Article  ADS  Google Scholar 

  11. A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 4631 (1993).

    Article  ADS  Google Scholar 

  12. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

    Article  ADS  Google Scholar 

  13. A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).

    Article  ADS  Google Scholar 

  14. F. Guinea, V. Hakim and A. Muramatsu, Phys. Rev. Lett. 54, 263 (1985).

    Article  ADS  Google Scholar 

  15. M. P. A. Fisher and W. Zwerger, Phys. Rev. B 32, 6190 (1985).

    Article  ADS  Google Scholar 

  16. A. Sen, JHEP 0204, 048 (2002)

    Article  ADS  Google Scholar 

  17. A. Sen, Int. J. Mod. Phys. A 20, 5513 (2005).

    Article  ADS  Google Scholar 

  18. T. Lee and G. W. Semenoff, JHEP 0505, 072 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Hasselfield, T. Lee, G. W. Semenoff and P. C. E. Stamp, Ann. Phys. 321, 2849 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Polchinski and L. Thorlacius, Phys. Rev. D 50, 622 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Thirring, Ann. Phys. 3, 91 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Fujikawa, Phys. Rev. D 21, 2848 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies (Oxford University Press, New York, 2004).

    Book  MATH  Google Scholar 

  24. C. M. Naón, Phys. Rev. D 31, 2035 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  25. L. S. Brown, Quantum Field Theory (Cambridge University Press, New York, 1992).

    Book  Google Scholar 

  26. S. D. Joglekar and B. W. Lee, Ann. Phys. 97, 160 (1976).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T. U(1) chiral symmetry in a one-dimensional interacting electron system with spin. Journal of the Korean Physical Society 69, 1401–1414 (2016). https://doi.org/10.3938/jkps.69.1401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1401

Keywords

Navigation