Skip to main content
Log in

Performance enhancement of the branch length similarity entropy descriptor for shape recognition by introducing critical points

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In previous studies, we showed that the branch length similarity (BLS) entropy profile could be used successfully for the recognition of shapes such as battle tanks, facial expressions, and butterflies. In the present study, we introduce critical points defined as a set of distinguishing points with high curvature to the BLS entropy profile in order to improve the shape recognition. In order to generate a given number of critical points from the shape, we propose a critical point detection method. Furthermore, we show the invariant properties of the BLS entropy descriptor. To evaluate the effects of critical points on the shape recognition of the BLS entropy descriptor, we performed a butterfly classification experiment against a real image data set, and we conducted performance comparisons with other point detection methods. In addition, the performance of the BLS entropy descriptor computed using the critical points was compared with those of other well-known descriptors such as the Fourier descriptor using three machine learning techniques, the Bayesian classifier, the multi-layer perceptron and the support vector machine. The results show that the BLS entropy descriptor outperforms other well-known descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Backes, D. Casanova and O. M. Bruno, Pattern Recognit. 42, 54 (2009).

    Article  Google Scholar 

  2. H. Sahbi, Neurocomputing 70, 3034 (2007).

    Article  Google Scholar 

  3. Y. Liu, D. Zhang, G. Lu and W. Y. Ma, Pattern Recognit. 40, 262 (2007).

    Article  Google Scholar 

  4. M. Safar, C. Shahabi and X. Sun, in Proceedings of IEEE International Conference on Multimedia and Exposition (New York, USA, Jul. 30 - Aug. 2, 2000), Vol. 1, p. 141.

    Google Scholar 

  5. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, New Jersey, 2007).

    Google Scholar 

  6. T. P. Wallace and P. A. Wintz, Comput. Graph Image Process 13, 99 (1980).

    Article  Google Scholar 

  7. G. C. H. Chuang and C. C. J. Kuo, IEEE Trans. Image Process 5, 56 (1996).

    Article  ADS  Google Scholar 

  8. P. Wunsch and A. F. Laine, Patter Recognit. 28, 1237 (1995).

    Article  Google Scholar 

  9. C. Hillsman, Y. Wang and D. Nazzal, Int. J. Adv. Manuf. Technol. 68, 1387 (2013).

    Article  Google Scholar 

  10. Y. Yoshioka, H. Iwata, R. Ohsawa and S. Ninomiya, Ann. Bot. 94, 657 (2004).

    Article  Google Scholar 

  11. T. Brosnan and D. W. Sun, Comput. Electron. Agric. 36, 193 (2002).

    Article  Google Scholar 

  12. K. S. Arun and P. M. Hema, Int. J. Recent. Trends Eng. 2, 35 (2009).

    Google Scholar 

  13. P. Zhao and S. Li, in Proceedings of the 9th International Conference for Young Computer Scientists (Hunan, China, Nov. 18-21, 2008), p. 1743.

    Google Scholar 

  14. S. Abbasi, F. Mokhtarian and J. Kittler, Multimed. Syst. 7, 467 (1999).

    Article  Google Scholar 

  15. M. Zhenjiang, Pattern Recognit. Lett. 21, 169 (2000).

    Article  Google Scholar 

  16. S. H. Lee, P. Bardunias and N. Y. Su, J. Korean Phys. Soc. 56, 1016 (2010).

    Article  Google Scholar 

  17. S. H. Lee, J. Korean Phys. Soc. 57, 501 (2010).

    Article  ADS  Google Scholar 

  18. S. H. Lee, E. Y. Kim and D. Yi, J. Korean Phys. Soc. 58, 377 (2011).

    Article  Google Scholar 

  19. S. H. Kang, S. H. Song and S. H. Lee, J. Asia-Pac. Entomol. 15, 431 (2012).

    Article  Google Scholar 

  20. Y. Choi, W. Jeon, S. H. Kang and S. H. Lee, J. Korean Phys. Soc. 60, 1840 (2012).

    Article  ADS  Google Scholar 

  21. S. H. Lee and O. S. Kwon, Entropy 16, 557 (2014).

    Article  ADS  Google Scholar 

  22. A. M. N. Fu and Y. Hong, Pattern Recognit. Lett. 18, 55 (1997).

    Article  Google Scholar 

  23. S. H. Kang, J. H. Cho and S. H. Lee, J. Asia-Pac. Entomol. 17, 143 (2014).

    Article  Google Scholar 

  24. P. W. Huang, S. K. Dai, P. L. Lin and R. T. Kuo, J. Syst. Softw. 54, 9 (2000).

    Article  Google Scholar 

  25. P. W. Huang, S. K. Dai and P. L. Lin, Pattern Recognit. Lett. 20, 163 (1999).

    Article  Google Scholar 

  26. H. Freeman, Comput. Surv. 6, 57 (1974).

    Article  Google Scholar 

  27. G. H. John and P. Langley, in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (Montreal, QU, Canada, 1995), p. 338.

    Google Scholar 

  28. C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1998).

    Google Scholar 

  29. J. C. Platt, Technical Report MSR-TR-98-14 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Ho Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Kang, SH. Performance enhancement of the branch length similarity entropy descriptor for shape recognition by introducing critical points. Journal of the Korean Physical Society 69, 1254–1262 (2016). https://doi.org/10.3938/jkps.69.1254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1254

Keywords

Navigation