Skip to main content
Log in

Nano-structural analysis of effective transport paths in fuel-cell catalyst layers by using stochastic material network methods

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A two-dimensional material network model has been developed to visualize the nano-structures of fuel-cell catalysts and to search for effective transport paths for the optimal performance of fuel cells in randomly-disordered composite catalysts. Stochastic random modeling based on the Monte Carlo method is developed using random number generation processes over a catalyst layer domain at a 95% confidence level. After the post-determination process of the effective connectivity, particularly for mass transport, the effective catalyst utilization factors are introduced to determine the extent of catalyst utilization in the fuel cells. The results show that the superficial pore volume fractions of 600 trials approximate a normal distribution curve with a mean of 0.5. In contrast, the estimated volume fraction of effectively inter-connected void clusters ranges from 0.097 to 0.420, which is much smaller than the superficial porosity of 0.5 before the percolation process. Furthermore, the effective catalyst utilization factor is determined to be linearly proportional to the effective porosity. More importantly, this study reveals that the average catalyst utilization is less affected by the variations of the catalyst’s particle size and the absolute catalyst loading at a fixed volume fraction of void spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Mench, Fuel Cell Engines (John Wiley & Sons, New Jersey, 2008).

    Book  Google Scholar 

  2. Y. Tabe, M. Nishino, H. Takamatsu and T. Chikahisa, J. Electrochem. Soc. 158, B1246 (2011).

    Article  Google Scholar 

  3. N. P. Siegel, M. W. Ellis, D. J. Nelson and M. R. von Spakovsky, J. Power Sources 115, 81 (2003).

    Article  ADS  Google Scholar 

  4. X. L. Curtis Marr, J. Power Sources 77, 17 (1999).

  5. W. Tiedemann and J. Newman, J. Electrochem. Soc. 122, 1482 (1975).

    Article  Google Scholar 

  6. N. Khajeh-Hosseini-Dalasm, M. J. Kermani, D. G. Moghaddam and J. M. Stockie, Int. J. Hydrogen Energ. 35, 2417 (2010).

    Article  Google Scholar 

  7. P. P. Mukherjee, Q. Kang and C. Y. Wang, Energ. Environ. Sci. 4, 346 (2011).

    Article  Google Scholar 

  8. L. Hao and P. Cheng, J. Power Sources 186, 104 (2009).

    Article  Google Scholar 

  9. L. Hao and P. Cheng, J. Power Sources 195, 3870 (2010).

    Article  Google Scholar 

  10. A. S. Joshi, K. N. Grew, A. A. Peracchio and W. K. S. Chiu, J. Power Sources 164, 631 (2007).

    Article  Google Scholar 

  11. A. S. Joshi, A. A. Peracchio, K. N. Grew and W. K. S. Chiu, J. Phys. D: Appl. Phys. 40, 2961 (2007).

    Article  ADS  Google Scholar 

  12. G. Wang, P. P. Mukherjee and C. Y. Wang, Electrochim. Acta 51, 3139 (2006).

    Article  Google Scholar 

  13. G. Wang, P. P. Mukherjee and C. Y. Wang, Electrochim. Acta 51, 3151 (2006).

    Article  Google Scholar 

  14. P. P. Mukherjee and C. Y. Wang, J. Electrochem. Soc. 153, A840 (2006).

    Article  Google Scholar 

  15. G. Luo, Y. Ji, C. Y. Wang and P. K. Sinha, Electrochim. Acta 55, 5332 (2010).

    Article  Google Scholar 

  16. P. K. Sinha and C. Y. Wang, Electrochim. Acta 52, 7936 (2007).

    Article  Google Scholar 

  17. J. T. Gostick, M. W. Fowler, M. A. Ioannidis, M. D. Pritzker, Y. M. Volfkovich and A. Sakars, J. Power Sources 156, 375 (2006).

    Article  Google Scholar 

  18. J. T. Gostick, M. A. Ioannidis, M. W. Fowler and M. D. Pritzker, J. Power Sources 173, 277 (2007).

    Article  Google Scholar 

  19. J. T. Gostick, J. Electrochem. Soc. 160, F731 (2013).

    Article  Google Scholar 

  20. A. Bazylak, D. Sinton, Z. S. Liu and N. Djilali, J. Power Sources 163, 784 (2007).

    Article  Google Scholar 

  21. A. Bazylak, V. Berejnov, B. Markicevic, D. Sinton and N. Djilali, Electrochim. Acta 53, 7630 (2008).

    Article  Google Scholar 

  22. B. Markicevic, A. Bazylak and N. Djilali, J. Power Sources 171, 706 (2007).

    Article  Google Scholar 

  23. M. Uchida, Y. Aoyama, N. Eda and A. Ohta, J. Electrochem. Soc. 142, 4143 (1995).

    Article  Google Scholar 

  24. D. Stauffer and A. Aharony, Introduction to percolation theory (Taylor and Francis, London, 1992).

    MATH  Google Scholar 

  25. J. M. Hammersley, Math. Proc. Cambridge 53, 642 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  26. J. M. Hammersley, Ann. NY Acad. Sci. 86, 844 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).

    Article  ADS  Google Scholar 

  28. Y. Bachmat and J. Bear, Transport Porous Med. 1, 213 (1986).

    Article  Google Scholar 

  29. Y. Bachmat and J. Bear, Transport Porous Med. 1, 241 (1986).

    Article  Google Scholar 

  30. P. Evesque, Poudres & Grains 11, 6 (2000).

    Google Scholar 

  31. I. M. Gitman, H. Askes and L. J. Sluys, Eng. Fract. Mech. 74, 2518 (2007).

    Article  Google Scholar 

  32. M. Ostoja-Starzewski, J. Appl. Mech. 69, 25 (2002).

    Article  ADS  Google Scholar 

  33. M. Eikerling and A. A. Kornyshev, J. Electroanal. Chem. 453, 89 (1998).

    Article  Google Scholar 

  34. A. Wouterse and A. P. Philipse, J. Chem. Phys. 125, 194709 (2006).

    Article  ADS  Google Scholar 

  35. D. Zhang, R. Zhang and S. Chen, Geophys. Res. Lett. 27, 1195 (2000).

    Article  ADS  Google Scholar 

  36. T. Kanit, S. Forest, I. Galliet, V. Mounoury and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003).

    Article  Google Scholar 

  37. M. S. Costanza-Robinson, B. D. Estabrook and D. F. Fouhey, Water Resour. Res. 47, W07513 (2011).

    Article  ADS  Google Scholar 

  38. J. Li, L. Zhang, Y. Wang and D. Fredlund, Can. Geotech. J. 46, 928 (2009).

    Article  Google Scholar 

  39. H. M. Jung, W. Choi and S. Um, J. Korean Phys. Soc. 56, 591 (2010).

    Article  Google Scholar 

  40. A. W. Drake, Fundamentals of applied probability theory (McGraw Hill, New York, 2007).

  41. D. Mavridis and C. G. G. Aitken, J. Forensic Sci. 54, 135 (2009).

    Article  Google Scholar 

  42. S. L. Weinberg and S. K. Abramowitz, Statistics using spss (Cambridge Univeristy Press, New York, 2008).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukkee Um.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Kim, AR. & Um, S. Nano-structural analysis of effective transport paths in fuel-cell catalyst layers by using stochastic material network methods. Journal of the Korean Physical Society 68, 533–544 (2016). https://doi.org/10.3938/jkps.68.533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.533

Keywords

Navigation