Skip to main content
Log in

DC breakdown characteristics of silicone polymer composites for HVDC insulator applications

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, Z. Zhang, C. Rehtanz, L. Luo, S. Rüberg and F. Liu, IEEE. Trans. Pow. Elec. 26, 1976 (2011).

    Article  Google Scholar 

  2. R. Feldman, M. Tomasini, E. Amankwah, J. C. Clare, P. W. Wheeler, D. R. Trainer and R. S. Whitehouse, IEEE Trans. Ind. App. 49, 1577 (2013).

    Article  Google Scholar 

  3. N. Yousefpoor, A. Narwal and S. Bhattacharya, IEEE Trans. Ind. Elect. 62, 3683 (2015).

    Google Scholar 

  4. C. K. C. Arruda and A. C. S. Lima, Elect. Pow. Syst. Res. 125, 91 (2015).

    Article  Google Scholar 

  5. J. M. Seifert, W. Petrusch and H. Janssen, IEEE Trans. Diel. Elect. Insul. 14, 125 (2007).

    Article  Google Scholar 

  6. A. Abbasi, A. Shayegani and K. Niayesh, IEEE Trans. Diel. Elect. Insul. 21, 721 (2014).

    Article  Google Scholar 

  7. J. K. Seong, W. Choi, W. J. Shin, J. S. Hwang and B. W. Lee, IEEE Trans. Appl. Supercond. 23, 5401604 (2013).

    Article  Google Scholar 

  8. I. Seo, W. Choi, J. Seong, B. Lee and J. Koo, JJAP 53, 08NL04 (2014).

  9. A. Masood, M. U. Zuberi and E. Husain, IEEE Trans. Diel. Elect. Insul. 15, 1051 (2008).

    Article  Google Scholar 

  10. R. G. Olsen, J. Daffe and C. F. Sarkinen, IEEE Trans. Pow. Appl. Syst. PAS-100, 971 (1981).

    Google Scholar 

  11. T. C. Cheng, C. T. Wu, F. Zedan, G. R. Elder, S. S. Low, J. N. Rippey and G. D. Rodriguez, IEEE Trans. Pow. Appl. Syst. PAS-100, 910 (1981).

    Google Scholar 

  12. T. C. Cheng and H. I. M. Nour, IEEE Trans. Elect. Insul. 24, 113 (1989).

    Article  Google Scholar 

  13. Z. Aydogmus, Expes. Syst. Appl. 36, 8705 (2009).

    Article  Google Scholar 

  14. H. Singer, H. Steinbigler and P. Weiss, IEEE Trans. Pow. Appl. Syst. 93, 1660 (1974).

    Article  Google Scholar 

  15. T. Doshi and R. S. Gorur, IEEE Trans. Diel. Elect. Insul. 18, 861 (1996).

    Article  Google Scholar 

  16. M.-C. Dinh, C.-H. Ju, J.-G. Kim, M. Park, I.-K. Yu and B. Yang, Physica C: Supercond. 494, 311 (2013).

    Article  ADS  Google Scholar 

  17. T. Takuma, T. Kawamoto and H. Fujinami, IEEE Trans. Pow. Appl. Syst. 100, 4665 (1981).

    Article  Google Scholar 

  18. F. H. Kreuger, Industrial High DC Voltage (Delft University Press, Delft, The Netherlands, 1995), p. 15.

    Google Scholar 

  19. P. B. Zhou, Numerical Analysis of Electromagnetic Fields, 1st ed. (Springer Verlag, Berlin, 1993).

    Book  Google Scholar 

  20. M. Nagao, M. Kurimoto, R. Takahashi and Y. Murakami, IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) (Mexico, October, 2011), p. 419.

    Google Scholar 

  21. H. Okubo, H. Kojima, F. Endo, K. Sahara, R. Yamaguchi and N. Hayakawa, IEEE Trans. Diel. Elect. Insul. 15, 647 (2008).

    Article  Google Scholar 

  22. D. Haught, J. Daley and P. Bakke, Intern. J. Appl. Ceram. Tech. 4, 197 (2007).

    Article  Google Scholar 

  23. I. J. Seo and J. Y. Koo, International Symposium on High Voltage Engineering (Korea, August, 2013), p. 780.

    Google Scholar 

  24. H. Suzuki, K. Ishihara and S. Akita, IEEE Trans. Pow. Deli. 7, 1677 (1992).

    Article  Google Scholar 

  25. B. K. Johnson, R. H. Lasseter, F. L. Alvarado, D. M. Divan, H. Singh, M. C. Chandorkar and R. Adapa, IEEE Trans. Appl. Supercond. 4, 115 (1994).

    Article  Google Scholar 

  26. P. Chowdhuri, C. Pallem, J. A. Demko and M. J. Gouge, IEEE Trans. Appl. Supercond. 15, 3917 (2005).

    Article  Google Scholar 

  27. H. Okubo, H. Saito, H. Kojima, N. Hayakawa and K. Kato, IEEE International Conference on Dielectric Liquids (ICDL) (Norway, June, 2011), p. 1.

    Google Scholar 

  28. N. H. Malik, IEEE Trans. Elect. Insul. 24, 3 (1989).

    Article  Google Scholar 

  29. Z. Xu, P. Qiu, Y. Huang and X. Li, International Conference on Power System Technology (POWERCON) (China, October, 2010), p. 1.

    Google Scholar 

  30. Project Report: Korea Institute of Energy Technology Evaluation and Planning (KETEP), No. 20111010500160 (2013).

  31. Y. M. Choi, I. J. Seo and J. Y. Koo, International Symposium on High Voltage Engineering (Korea, August, 2013), p. 347.

    Google Scholar 

  32. H. Okubo, T. Nara, H. Saito, H. Kojima, N. Hayakawa and K. Kato, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (USA, October, 2010), p. 1.

    Google Scholar 

  33. T. Hasegawa, M. Hatano, K. Yamaji, T. Kouan and N. Hosokawa, IEEE Trans. Pow. Deli. 12, 1526 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Won Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, BJ., Seo, IJ., Seong, JK. et al. DC breakdown characteristics of silicone polymer composites for HVDC insulator applications. Journal of the Korean Physical Society 67, 1783–1791 (2015). https://doi.org/10.3938/jkps.67.1783

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1783

Keywords

Navigation