Skip to main content
Log in

Broadband quasi-phase-matching second-harmonic generation in 0.5 mol% MgO-doped periodically poled stoichiometric LiTaO3

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Broadband type 0 (ee-e) and type I (oo-e) quasi-phase-matching (QPM) second-harmonic generations (SHGs) are investigated in 0.5 mol% MgO-doped periodically poled stoichiometric LiTaO3 (0.5 mol% MgO:PPSLT). The group-velocity matching (GVM) fundamental wavelength and corresponding QPM crystal grating period are calculated for temperatures from 20 to 200 °C. The SHG bandwidths are obtained at different temperatures. The tuning ranges of GVM fundamental wavelength for type 0 and I QPM are 2.575 - 2.590 μm and 2.497 - 2.712 μm for temperature from 20 to 200 °C, respectively. The SHG bandwidths are all around 90 nm at 25 (room temperature), 100 and 200 °C at a crystal length of 10 mm for type 0 and I QPM. The influence of temperature on the GVM fundamental wavelength and the SHG bandwidth is larger for type I QPM than that for type 0 QPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura and T. Taira, Opt. Lett. 27, 1046 (2002).

    Article  ADS  Google Scholar 

  2. N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda and T. Taira, Appl. Phys. Lett. 82, 3388 (2003).

    Article  ADS  Google Scholar 

  3. S. Ashihara, T. Shimura and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003).

    Article  ADS  Google Scholar 

  4. J. Zhang, Y. Chen, F. Lu, W. Lu, W. Dang, X. Chen and Y. Xia, Appl. Optics 46, 7791 (2007).

    ADS  Google Scholar 

  5. Z. Huang, C. Tu, S. Zhang, Y. Li, F. Lu, Y. Fan and E. Li, Opt. Lett. 35, 877 (2010).

    Article  ADS  Google Scholar 

  6. N. E. Yu et al., Appl. Phys. Lett. 85, 5839 (2004).

    Article  ADS  Google Scholar 

  7. S. H. Bae, I. H. Beak, S. Y. Choi, W. B. Cho, F. Rotermund and C. S. Yoon, Opt. Commun. 283, 1894 (2010).

    Article  ADS  Google Scholar 

  8. F. Konig and F. N. C. Wong, Appl. Phys. Lett. 84, 1644 (2004).

    Article  ADS  Google Scholar 

  9. R. Wu, Y. Chen, J. Zhang, X. Chen and Y. Xia, Appl. Optics 44, 5561 (2005).

    Article  ADS  Google Scholar 

  10. F. Laurell, T. Calmano, S. Muller, P. Zeil, C. Canalias and G. Huber, Opt. Express 20, 22308 (2012).

    Article  ADS  Google Scholar 

  11. N. E. Yu, S. Kurimura and K. Kitamura, J. Korean Phys. Soc. 47, 636 (2005).

    Google Scholar 

  12. Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao and S. N. Zhu, Opt. Express 19, 17500 (2011).

    Article  ADS  Google Scholar 

  13. S. C. Kumar and M. E. Zadeh, Opt. Lett. 36, 2578 (2011).

    Article  ADS  Google Scholar 

  14. D. Chuchumishev, A. Gaydardzhiev, T. Fiebig and I. Buchvarov, Opt. Lett. 38, 3347 (2013).

    Article  ADS  Google Scholar 

  15. M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer and L. H. Peng, Opt. Lett. 38, 3892 (2013).

    Article  ADS  Google Scholar 

  16. M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer and L. H. Peng, Appl. Phys. B-Lasers Opt. 110, 459 (2013).

    Article  ADS  Google Scholar 

  17. M. Stappel, D. Kolbe and J. Walz, Opt. Lett. 39, 2951 (2014).

    Article  ADS  Google Scholar 

  18. A. Aadhi, N. A. Chaitanya, M. V. Jabir, R. P. Singh and G. K. Samanta, Opt. Lett. 40, 33 (2015).

    Article  ADS  Google Scholar 

  19. S. Kumaragurubaran, S. Takekawa, M. Nakamura and K. Kitamura, J. Cryst. Growth 292, 332 (2006).

    Article  ADS  Google Scholar 

  20. A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook and S. J. Sharpe, Appl. Optics 48, 964 (2009).

    Article  ADS  Google Scholar 

  21. S. Stivala, F. Buccheri, L. Curcio, R. L. Oliveri, A. C. Busacca and G. Assanto, Opt. Express 19, 25780 (2011).

    Article  ADS  Google Scholar 

  22. P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He and Y. Hang, Opt. Mater. 33, 1677 (2011).

    Article  ADS  Google Scholar 

  23. V. Y. Shur, A. R. Akhmatkhanov, M. A. Chuvakova and I. S. Baturin, Appl. Phys. Lett. 105, 152905 (2014).

    Article  ADS  Google Scholar 

  24. H. J. Lee, H. Kim, M. Cha and H. S. Moon, Opt. Express 23, 14203 (2015).

    Article  ADS  Google Scholar 

  25. M. Yin, S. Zhou and G. Feng, Acta Phys. Sin. 61, 234206 (2012).

    Google Scholar 

  26. I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin and G. Gadret, Appl. Phys. B-Lasers Opt. 96, 423 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M. Broadband quasi-phase-matching second-harmonic generation in 0.5 mol% MgO-doped periodically poled stoichiometric LiTaO3 . Journal of the Korean Physical Society 67, 1750–1754 (2015). https://doi.org/10.3938/jkps.67.1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1750

Keywords

Navigation