Skip to main content
Log in

Dynamics of a polyelectrolyte under a constant electric field

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We perform a molecular dynamics simulation of a polyelectrolyte in a viscous fluid under an external electric field to study the dynamics of gel-free electrophoresis. To incorporate the hydrodynamic effects, we employ a coarse-grained description of water by using multiparticle collision dynamics. We use a screened Coulomb interaction among the monomers and explicit monovalent counterions to model the electrostatic interactions in an ionic solution. The mobility of the polyelectrolyte µ is obtained as a function of the molecular weight N, the electric field strength E,and the Debye screening length of the solvent λ. The mobility is found to be independent of N for large N and to exhibit a maximum at a certain N for a large λ, which are in agreement with experimental results. The dependence of µ on E is also examined and discussed by considering the effects of an electric field on counterion condensation. The dependence of µ on λ shows a discrepancy between our simulation and experiments, which implies that the added salts not only screen out the Coulomb interaction but also participate in the counterion condensation significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Manning, J. Phys. Chem. 85,1506(1981).

    Article  Google Scholar 

  2. D. A. Hoagland, E. Arvanitidou and C. Welch, Macromolecules 32,6180(1999).

    Article  ADS  Google Scholar 

  3. M. Muthukumar, Macromol. Theory Simul. 3, 61(1994).

    Article  Google Scholar 

  4. S. Frank and R. G. Winkler, Europhys. Lett. 83, 38004(2008).

    Article  ADS  Google Scholar 

  5. K. Grass, U. Böhme, U. Scheler, H. Cottet and C. Holm, Phys. Rev. Lett. 100, 096104(2008).

    Article  ADS  Google Scholar 

  6. O. A. Hickey, T. N. Shendruk, J. L. Harden and G. W. Slater, Phys. Rev. Lett. 109, 098302(2012).

    Article  ADS  Google Scholar 

  7. D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic Press, New York, 1996).

    MATH  Google Scholar 

  8. A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605(1999).

    Article  ADS  Google Scholar 

  9. R. Kapral, Adv. Chem. Phys. 140, 89(2008).

    Article  Google Scholar 

  10. G. Gompper, T. Ihle, D. M. Kroll and R. G. Winkler, Adv. Polym. Sci. 221, 1(2009).

    Google Scholar 

  11. P. J. Park, J. Korean Phys. Soc. 61, 579(2012).

    Article  ADS  Google Scholar 

  12. T. Ihle and D. Kroll, Phys. Rev. E 67, 066705(2003).

    Article  ADS  Google Scholar 

  13. C. C. Huang, A. Chatterji, G. Sutmann, G. Gompper and R. G. Winkler, J. Comput. Phys. 229, 168(2010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyeong Jun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, P.J. Dynamics of a polyelectrolyte under a constant electric field. Journal of the Korean Physical Society 67, 1569–1573 (2015). https://doi.org/10.3938/jkps.67.1569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1569

Keywords

Navigation