Skip to main content
Log in

Electronic transport and thermoelectric properties of double-filled Pr1−z Yb z Fe4−x Co x Sb12 skutterudites

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

P-type Pr1−z Yb z Fe4−x Co x Sb12 skutterudites were prepared by encapsulated melting, annealing and hot pressing, and the effects of Pr/Yb double-filling and Co substitution on the phase stability, the microstructure, and the transport and thermoelectric properties were examined. All specimens were transformed to the skutterudite phase by annealing, and a few FeSb2 phases were produced, but their amounts could be reduced by Co substitution. The actual compositions of the filler (Pr/Yb) were slightly lower than the nominal compositions due to the filling fraction limit and the volatilization of elements, and the lattice constant decreased with increasing Pr and Co contents. The electrical conductivity decreased with increasing temperature, indicating a degenerate semiconductor behavior, and the Hall and the Seebeck coefficients showed positive signs, implying p-type conduction. The electrical conductivity decreased due to a decrease in the carrier concentration with increasing Pr and Co contents, and the Seebeck coefficients increased while the thermal conductivity decreased because of the decreased electronic thermal conductivity. Although the lattice thermal conductivity rarely changed with the filling fraction of Pr and Yb, it had low values due to the relatively high electronic thermal conductivity. As a result, the dimensionless figure of merit, ZT, was improved by Pr/Yb double filling and Co substitution, and a maximum ZT = 0.85 was obtained at 723 K for Pr0.75Yb0.25Fe3.5Co0.5Sb12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  2. G. S. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  3. W. Liu, X. Yan, G. Chen and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  4. X. Shi, S. Q. Bai, L. L. Xi, J. O. Yang, W. Q. Zhang, L. D. Chen and J. Yang, J. Mater. Res. 26, 1745 (2011).

    Article  ADS  Google Scholar 

  5. S. Ballikaya, N. Uzar, S. Yildirim, J. R. Salvador and C. Uher, J. Sol. Stat. Chem. 193, 31 (2012).

    Article  ADS  Google Scholar 

  6. B. C. Sales, D. G. Mandrus and B. C. Chakoumakos, Recent Trends in Thermoelectric Materials Research II, edited by T. M. Tritt (Academic, San Diego, 2000), p. 1.

  7. C. Uher, Recent Trends in Thermoelectric Materials Research II, edited by T. M. Tritt (Academic, San Diego, 2000), p. 139.

  8. X. Shi, J. R. Salvador, J. Yang and H. Wang, J. Electron. Mater. 38, 930 (2009).

    Article  ADS  Google Scholar 

  9. X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. D. Chen and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  ADS  Google Scholar 

  10. J. S. Dyck, W. Chen, C. Uher, L. D. Chen, X. Tang and T. Hirai, J. Appl. Phys. 91, 3698 (2002).

    Article  ADS  Google Scholar 

  11. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl and M. Zehetbauer, Intermet. 18, 394 (2010).

    Article  Google Scholar 

  12. W. Jeitschko and D. Braun, Acta Cryst. B 33, 3401 (1977).

    Article  Google Scholar 

  13. C. Uher, Thermoelectric and Its Energy Harvesting, Vol. 2, edited by D. M. Rowe (CRC, Boca Raton, FL, 2012), Chap. 10.

  14. D. T. Morelli, G. P. Meisner, B. X. Chen, S. Q. Hu and C. Uher, Phys. Rev. B 56, 7376 (1997).

    Article  ADS  Google Scholar 

  15. G. S. Noals, J. L. Cohn and G. A. Slack, Phys. Rev. B 58, 164 (1998).

    Article  ADS  Google Scholar 

  16. L. D. Chen, T. Kawahara, X. F. Tang, T. Goto. T. Hirai, J. S. Dyck, W. Chen and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  ADS  Google Scholar 

  17. Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai, X. Y. Zhao, Z. G. Mei and X. Y. Li, Appl. Phys. Lett. 89, 221107 (2006).

    Article  ADS  Google Scholar 

  18. G. P. Meisner, D. T. Morelli, S. Hu, J. Yang and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).

    Article  ADS  Google Scholar 

  19. J. Yang, W. Zhang, S. Q. Bai, Z. Mei and L. D. Chen, Appl. Phys. Lett. 90, 192111 (2007).

    Article  ADS  Google Scholar 

  20. Z. Chen, J. O. Yang, R. H. Liu, L. L. Xi, W. Q. Zhang and J. Yang, J. Electron. Mater. 42, 2492 (2013).

    Article  ADS  Google Scholar 

  21. C. Uher, Thermoelectrics Handbook, edited by D. M. Rowe (CRC, Boca Raton, FL, 2006), Chap. 34.

  22. R. H. Liu, J. O. Yang, X. H. Chen, X. Shi, L. D. Chen and C. Uher, Intermet. 19, 1747 (2011).

    Article  Google Scholar 

  23. S. Ballikaya, N. Uzar, S. Yildirim, H. Chi, X. L. Su, G. J. Tan, X. F. Tang and C. Uher, J. Electron. Mater. 42, 1622 (2013).

    Article  ADS  Google Scholar 

  24. J. Yu, W. Y. Zhao, B. Lei, D. G. Tang and Q. J. Zhang, J. Electron. Mater. 42, 1400 (2013).

    Article  ADS  Google Scholar 

  25. L. Zhou, P. F. Qiu, C. Uher, X. Shi and L. D. Chen, Intermet. 32, 209 (2013).

    Article  Google Scholar 

  26. Y. G. Yan, W. Wong-Ng, L. Li, I. Levin, J. A. Kaduk, M. R. Suchomel, X. Sun, G. J. Tan and X. F. Tang, J. Sol. Stat. Chem. 218, 221 (2014).

    Article  ADS  Google Scholar 

  27. Y. K. Dong, P. Puneet, T. M. Tritt and G. S. Nolas, J. Mater. Sci. 50, 34 (2015).

    Article  ADS  Google Scholar 

  28. X. Shi et al., J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  29. G. Rogl et al., Acta Mater. 60, 2146 (2012).

    Article  Google Scholar 

  30. G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer and O. Eibl, Acta Mater. 63, 30 (2014).

    Article  Google Scholar 

  31. G. J. Tan, S. Y. Wang, Y. G. Yan, H. Li and X. F. Tang, J. Electron. Mater. 41, 1147 (2012).

    Article  ADS  Google Scholar 

  32. P. F. Qiu, J. Yang, R. H. Liu, X. Shi, X. Y. Huang, G. J. Snyder, W. Zhang and L. D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  ADS  Google Scholar 

  33. Y. C. Lan, A. J. Minnich, G. Chen and Z. F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 152.

    Google Scholar 

  35. J. Y. Cho, Z. Ye, M. M. Tessema, R. A. Waldo, J. R. Salvador, J. Yang, W. Cai and H. Wang, Acta Mater. 60, 2104 (2012).

    Article  Google Scholar 

  36. D. K. Shin and I. H. Kim, J. Korean Phys. Soc. 66, 1879 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, DK., Kim, IH. Electronic transport and thermoelectric properties of double-filled Pr1−z Yb z Fe4−x Co x Sb12 skutterudites. Journal of the Korean Physical Society 67, 1208–1213 (2015). https://doi.org/10.3938/jkps.67.1208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1208

Keywords

Navigation