Skip to main content
Log in

Superheavy dark matter in light of dark radiation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Superheavy dark matter can satisfy the observed dark matter abundance if the stability condition is fulfilled. Here, we propose a new Abelian gauge symmetry U(1) H for the stability of superheavy dark matter as the electromagnetic gauge symmetry to the electron. The new gauge boson associated with U(1) H contributes to the effective number of relativistic degrees of freedom in the universe as dark radiation, which has been recently measured by several experiments, e.g., PLANCK. We calculate the contribution to dark radiation from the decay of a scalar particle via the superheavy dark matter in the loop. Interestingly enough, this scenario will be probed by a future LHC run in the invisible decay signatures of the Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996); G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005); J. L. Feng, Ann. Rev. Astron. Astrophys. 48, 495 (2010).

    Article  ADS  Google Scholar 

  2. B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977).

    Article  ADS  Google Scholar 

  3. K. Griest and M. Kamionkowski, Phys. Rev. Lett. 64, 615 (1990).

    Article  ADS  Google Scholar 

  4. P. A. R. Ade et al. [Planck Collaboration], [arXiv: 1303.5076 [astro-ph.CO]].

  5. D. J. H. Chung, E. W. Kolb and A. Riotto, Phys. Rev. D 59, 023501 (1999); D. J. H. Chung, E. W. Kolb and A. Riotto, Phys. Rev. Lett. 81, 4048 (1998); D. J. H. Chung, E. W. Kolb and A. Riotto, Phys. Rev. D 60, 063504 (1999).

    Article  ADS  Google Scholar 

  6. D. J. H. Chung, P. Crotty, E. W. Kolb and A. Riotto, Phys. Rev. D 64, 043503 (2001).

    Article  ADS  Google Scholar 

  7. R. Kallosh, A. D. Linde, D. A. Linde and L. Susskind, Phys. Rev. D 52, 912 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Banks and N. Seiberg, Phys. Rev. D 83, 084019 (2011).

    Article  ADS  Google Scholar 

  9. J. L. Menestrina and R. J. Scherrer, Phys. Rev. D 85, 047301 (2012).

    Article  ADS  Google Scholar 

  10. W. Fischler and J. Meyers, Phys. Rev. D 83, 063520 (2011); M. C. Gonzalez-Garcia, V. Niro and J. Salvado, JHEP 1304, 052 (2013); J. Hasenkamp and J. Kersten, JCAP 1308, 024 (2013).

    Article  ADS  Google Scholar 

  11. C. S. Kim, S. C. Park, K. Wang and G. Zhu, Phys. Rev. D 81, 054004 (2010).

    Article  ADS  Google Scholar 

  12. B. Holdom, Phys. Lett. B 166, 196 (1986); L. B. Okun, Sov. Phys. JETP 56, 502 (1982), [Zh. Eksp. Teor. Fiz. 83, 892 (1982)].

    Article  ADS  Google Scholar 

  13. K. R. Dienes, C. F. Kolda and J. March-Russell, Nucl. Phys. B 492, 104 (1997); J.-H. Huh, J. E. Kim, J.-C. Park and S. C. Park, Phys. Rev. D 77, 123503 (2008); E. J. Chun and J.-C. Park, JCAP 0902, 026 (2009); E. J. Chun, J.-C. Park and S. Scopel, JHEP 1102, 100 (2011); G. Belanger and J.-C. Park, JCAP 1203, 038 (2012); J.-C. Park and S. C. Park, Phys. Lett. B 718, 1401 (2013).

    Article  ADS  Google Scholar 

  14. T. Binoth and J. J. van der Bij, Z. Phys. C 75, 17 (1997); R. Schabinger and J. D. Wells, Phys. Rev. D 72, 093007 (2005).

    Article  Google Scholar 

  15. J. C. Park and S. C. Park, in preparation.

  16. G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 208, 19 (2013).

    Article  ADS  Google Scholar 

  17. G. Steigman, Adv. High Energy Phys. 2012, 268321 (2012).

    Article  Google Scholar 

  18. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, Nucl. Phys. B 729, 221 (2005).

    Article  ADS  Google Scholar 

  19. D. Hooper, F. S. Queiroz and N. Y. Gnedin, Phys. Rev. D 85, 063513 (2012); K. Choi, K.-Y. Choi and C. S. Shin, Phys. Rev. D 86, 083529 (2012); P. Di Bari, S. F. King and A. Merle, Phys. Lett. B 724, 77 (2013); C.Kelso, S. Profumo and F. S. Queiroz, Phys. Rev. D 88, 023511 (2013).

    Article  ADS  Google Scholar 

  20. R. J. Scherrer and M. S. Turner, Astrophys. J. 331, 33 (1988).

    Article  ADS  Google Scholar 

  21. J.-C. Park and S. C. Park, [arXiv:1305.5013 [hep-ph]].

  22. G. Aad, et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).

    Article  ADS  Google Scholar 

  23. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

  24. P. P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, [arXiv:1303.3570 [hep-ph]].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Chan Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JC., Park, S.C. Superheavy dark matter in light of dark radiation. Journal of the Korean Physical Society 65, 805–808 (2014). https://doi.org/10.3938/jkps.65.805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.805

Keywords

Navigation