Skip to main content
Log in

Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schrödinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Franke-Arnold, L. Allen and M. Padgett, Laser & Photon. Rev. 2, 299 (2008).

    Article  Google Scholar 

  2. Y. V. Kartashov, B. A. Malomed and L. Torner, Rev. Mod. Phys. 83, 247 (2011).

    Article  ADS  Google Scholar 

  3. M. A. Molchan, E. V. Doktorov and R. A. Vlasov, Opt. Lett. 35, 670 (2010).

    Article  ADS  Google Scholar 

  4. S. H. Tao, X-C. Yuan, J. Lin, X. Peng and H. B. Niu, Opt. Express 13, 7726 (2005).

    Article  ADS  Google Scholar 

  5. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett and M. J. Padgett, Opt. Express 16, 993 (2008).

    Article  ADS  Google Scholar 

  6. A. Mair, A. Vasari, G. Weihs and A. Zeilinger, Nature 412, 313 (2001).

    Article  ADS  Google Scholar 

  7. J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett and M. J. Padgett, Phys. Rev. Lett. 106, 100407 (2011).

    Article  ADS  Google Scholar 

  8. M. J. Padgett and R. Bowman, Nature photonics 5, 343 (2011).

    Article  ADS  Google Scholar 

  9. J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph and P. K. Gupta, Appl. Phys. Lett. 100, 121101 (2012).

    Article  ADS  Google Scholar 

  10. K. Sasaki, N. Suzuki and H. Saito, Phys. Rev. A 83, 033602 (2011).

    Article  ADS  Google Scholar 

  11. M. J. Paz-Alonso and H. Michinel, Phys. Rev. Lett. 94, 093901 (2005).

    Article  ADS  Google Scholar 

  12. K. O’Holleran, M. R. Dennis and M. J. Padgett, Phys. Rev. Lett. 102, 143902 (2009).

    Article  ADS  Google Scholar 

  13. J. Leach, M. R. Dennis, J. Courtial and M. J. Padgett, New J. Phys. 7, 55 (2005).

    Article  ADS  Google Scholar 

  14. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron and N. Davidson, Phys. Rev. Lett. 98, 203601 (2007).

    Article  ADS  Google Scholar 

  15. J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Nature 422, 147 (2003).

    Article  ADS  Google Scholar 

  16. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer and M. Segev, Phys. Rev. E 66, 046602 (2002).

    Article  ADS  Google Scholar 

  17. C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski and Y. S. Kivshar, Opt. Lett. 32, 397 (2007).

    Article  ADS  Google Scholar 

  18. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya and Y. S. Kivshar, Phys. Rev. Lett. 92, 123903 (2004).

    Article  ADS  Google Scholar 

  19. Q. Y. Chen, P. G. Kevrekidis and B. A. Malomed, Eur. Phys. J. D 58, 141 (2010).

    Article  ADS  Google Scholar 

  20. A. Bezryadina, D. N. Neshev, A. S. Desyatnikov, J. Young, Z. Chen and Y. S. Kivshar, Opt. Express 14, 8317 (2006).

    Article  ADS  Google Scholar 

  21. T. J. Alexander, A. S. Desyatnikov and Y. S. Kivshar, Opt. Lett. 32, 1293 (2007).

    Article  ADS  Google Scholar 

  22. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte and A. Tünnermann, Opt. Express 14, 6055 (2006).

    Article  ADS  Google Scholar 

  23. C. Yin, D. Mihalache and Y. He, J. Opt. Soc. Am. B 28, 342 (2011).

    Article  Google Scholar 

  24. B. Liu, Y-J. He, B. A. Malomed, X-S. Wang, P. G. Kevrekidis, T-B. Wang, F-C. Leng, Z-R. Qiu and H-Z. Wang, Opt. Lett. 35, 1974 (2010).

    Article  ADS  Google Scholar 

  25. C. Patterson, Phys. Rev. Lett. 94, 153901 (2005).

    Article  ADS  Google Scholar 

  26. T. Schwartz, G. Bartal, S. Fishman and M. Segev, Nature 446, 52 (2007).

    Article  ADS  Google Scholar 

  27. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela and M. Segev, Science 332, 1541 (2011).

    Article  ADS  Google Scholar 

  28. L-G. Wang, L-Q. Wang and S-Y. Zhu, Opt. Commun. 282, 1088 (2009).

    Article  ADS  Google Scholar 

  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, 2003).

    Google Scholar 

  30. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett and S. Franke-Arnold, Opt. Express 12, 5448 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kihong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, YK., Kim, K. Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices. Journal of the Korean Physical Society 65, 2040–2044 (2014). https://doi.org/10.3938/jkps.65.2040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.2040

Keywords

Navigation