Skip to main content
Log in

Magnetocaloric effect in Ni-Zn ferrite nanoparticles prepared by using solution combustion

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ni x Zn1−x Fe2O4 (x = 0.2 and 0.3) ferrite nanoparticles with sizes ranging from 65 to 70 nm were synthesized employing the solution combustion route. The magnetocaloric behavior was investigated within the 50 K ≤ T ≤ 400 K range of temperatures (T). The entropy change (ΔS) and the adiabatic temperature change (ΔT) were derived from magnetization (M) and specific heat (C P ) measurements. Both compositions exhibited broad peaks for the isothermal entropy change. The magnetic field (H)-dependent ΔT was analyzed within the mean-field approximation scheme, and the observed magnetocaloric properties of the nanoparticle samples were compared with those of a bulk sample. Our study suggests that the magnetocaloric properties of magnetic oxides strongly depend on the particle size; thus, particle size should be considered as a key tuning parameter in the optimization of magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati and J. M. D. Coey, Journal of Magn. Magn. Mater. 323, 2214 (2011).

    Article  ADS  Google Scholar 

  2. G. V. Brown, J. Appl, Phys. 47, 3673 (1976).

    Article  ADS  Google Scholar 

  3. V. K. Pecharsky and K. A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997).

    Article  ADS  Google Scholar 

  4. V. K. Pecharsky and K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  ADS  Google Scholar 

  5. A. O. Pecharsky, K. A. Gschneidner Jr. and V. K. Pecharsky, J. Magn. Magn. Mater. 267, 60 (2003).

    Article  ADS  Google Scholar 

  6. W. Dunhui, L. Haidong, T. Shaolong, Y. Sen, S. Huang and Y. Du, Phys. Rev. A 297, 247 (2002).

    Google Scholar 

  7. J. S. Marcos, J. R. Femandez, B. Chevalier, J. L. Bobet and J. Etoumeau, J. Magn. Magn. Mater. 272, 579 (2004).

    Article  ADS  Google Scholar 

  8. F. Canepa, M. Napoletano and S. Grafici, Intermetallics 10, 731 (2002).

    Article  Google Scholar 

  9. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati and J. M. D. Coey, J. Magn. Magn. Mater. 323, 2214 (2011).

    Article  ADS  Google Scholar 

  10. H. Mamiya, N. Terada, T. Furubayashi, H. S. Suzuki and H. Kitazawa, J. Magn. Magn. Mater. 322, 1561 (2010).

    Article  ADS  Google Scholar 

  11. V. Provenzano, J. Li, T. King, E. Canavan, P. Shirron, M. Dipirro and R. D. Shull J. Magn. Magn. Mater. 266, 185 (2003).

    Article  ADS  Google Scholar 

  12. T. Kinoshita, S. Seino, H. Muruyama, Y. Otome, K. Okitsu, T. Nakayama, K. Niihara, T. Nakagawa and T. A. Yamamoto, J. Alloys Comp. 365, 281 (2004).

    Article  Google Scholar 

  13. P. Poddar, J. Gass, D. J. Rebar, S. Srinath, H. Srikanth, S. A. Morrison and E. E. Carpenter, J. Magn. Magn. Mater. 307, 227 (2006).

    Article  ADS  Google Scholar 

  14. S. Hariharan and J. Gass, Rev. Adv. Mater. Sci. 10, 398 (2005).

    Google Scholar 

  15. N. Chau, N. K. Thuan, D. L. Minh and N. H. Luong, VNU J. Sci., Math-Phys. 24, 155 (2008).

    Google Scholar 

  16. Manh-Huong Phan and Seong-Cho Yu, J. Magn. Magn. Mater. 308, 325 (2007).

    Article  ADS  Google Scholar 

  17. R. C. Kambale, K. M. Song, Y. S. Koo and N. Hur, J. Appl. Phys. 110, 053910 (2011).

    Article  ADS  Google Scholar 

  18. R. C. Kambale, P. A. Shaikh, C. H. Bhosale, K. Y. Rajpure and Y. D. Kolekar, Smart Mater. Struc. 18, 115028 (2009).

    Article  ADS  Google Scholar 

  19. R. C. Kambale, P. A. Shaikh, N. S. Harale, V. A. Bilur, Y. D. Kolekar, C. H. Bhosale and K. Y. Rajpure, J. Alloys Comp. 490, 568 (2010).

    Article  Google Scholar 

  20. T. Sarkar, A. K. Raychaudhuri, A. K. Bera and S. M. Yusuf, New J. Phys. 12, 123026 (2010).

    Article  ADS  Google Scholar 

  21. A. H. Morish, The Physical Principles of Magnetics (Wiley, New York, 1963).

    Google Scholar 

  22. A. M. Tishin and I. Spichin, The magnetocaloric Effect and Its Applications (Institute of Physics Publishing, Bristol, 2003).

    Book  Google Scholar 

  23. V. Franco, A. Conde, J. M. Romeo-Enrique, Y. I. Spichkin, V. I. Zverev and A. M. Tishin, J. Appl. Phys. 106, 103911 (2009).

    Article  ADS  Google Scholar 

  24. V. Franco, J. S. Blarguez and A. Conde, Appl. Phys. Lett. 89, 222512 (2006).

    Article  ADS  Google Scholar 

  25. K. A. Gschneidner, Jr. and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.D., Kambale, R.C. & Hur, N. Magnetocaloric effect in Ni-Zn ferrite nanoparticles prepared by using solution combustion. Journal of the Korean Physical Society 65, 1930–1934 (2014). https://doi.org/10.3938/jkps.65.1930

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1930

Keywords

Navigation