Skip to main content
Log in

Multifractal analysis of implied volatility in index options

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we analyze the statistical and the non-linear properties of the log-variations in implied volatility for the CAC40, DAX and S&P500 daily index options. The price of an index option is generally represented by its implied volatility surface, including its smile and skew properties. We utilize a Lévy process model as the underlying asset to deepen our understanding of the intrinsic property of the implied volatility in the index options and estimate the implied volatility surface. We find that the options pricing models with the exponential Lévy model can reproduce the smile or sneer features of the implied volatility that are observed in real options markets. We study the variation in the implied volatility for at-the-money index call and put options, and we find that the distribution function follows a power-law distribution with an exponent of 3.5 ≤ γ ≤ 4.5. Especially, the variation in the implied volatility exhibits multifractal spectral characteristics, and the global financial crisis has influenced the complexity of the option markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cont and P. Tankov, Financial Modelling with jump processes, (Chapman & Hall/CRC, 2004).

    MATH  Google Scholar 

  2. D. Madan, P. Carr and E. Chang, Eur. Finan. Rev. 2, 79 (1998).

    Article  MATH  Google Scholar 

  3. G. Bakshi, C. Cao and Z. Chen, J. Finance 52, 2003 (1997).

    Article  Google Scholar 

  4. S. Yang, Y. Lee, G. Oh and J. Lee, ESWA 38, 4816 (2011).

    Google Scholar 

  5. B. Dumas, J. Fleming and R. E. Whaley, J. Finance 8, 2059 (1998).

    Article  Google Scholar 

  6. R. Cont and J. D. Fonseca, Quantitative Finance 2, 45 (2002).

    Article  MathSciNet  Google Scholar 

  7. S. Jones Christopher, J. Econometrics 116, 181 (2003).

    Article  MATH  Google Scholar 

  8. R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press New York, 2000).

    Google Scholar 

  9. J. Voit, The Statistical Mechanics of Financial Markets (Springer Berlin, 2001), p. 59.

    Book  MATH  Google Scholar 

  10. R. N. Mantegna and H. E. Stanley, Nature 376, 46 (1995).

    Article  ADS  Google Scholar 

  11. X. Gabaix, P. Gospikrishnan, V. Plerou and H. E. Stanley, Nature 423, 26 (2003).

    Article  Google Scholar 

  12. T. Lux and F. Westerhoff, Nature Phys. 5, 2 (2009).

    Article  ADS  Google Scholar 

  13. D. H. Kim, S. E. Maeng, Y. S. Bang, H. W. Choi, M.-Y. Cha and J. W. Lee, J. Korean Phys. Soc. 58, 396 (2011).

    Article  Google Scholar 

  14. W. Li, F. Wang, S. Havlin and H. E. Stanley, Phys. Rev. E 84, 046112 (2011).

    Article  ADS  Google Scholar 

  15. D.-M. Song, M. Tumminello, W.-X. Zhou and R. N. Mantegna, Phys. Rev. E 84, 026108 (2011)

    Article  ADS  Google Scholar 

  16. A. Garche, G. Disdier, J. Kockelkoren and J.-P. Bouchaud, Phys. Rev. E 88, 032809 (2013).

    Article  ADS  Google Scholar 

  17. G. Oh, C. Eom, F. Wang, W.-S. Jung, H. E. Stanley, and S. Kim, Eur. Phys. J. B 79, 55 (2011).

    Article  ADS  Google Scholar 

  18. C. Eom, G. Oh and S. Kim, Physica A 383, 139 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Oh, S. Kim and C. Eom, Physica A 382, 209 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  20. O. Kwon and G. Oh, Euro. Lett. 97, 28007 (2012).

    Article  ADS  Google Scholar 

  21. P. Carr and D. Madan, J. Comput. Finan. 2, 61 (1999).

    Google Scholar 

  22. S. Heston, Rev. Finan. Stud. 6, 327 (1993).

    Article  Google Scholar 

  23. J. W. Kantelhardt, S. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde and H. E. Stanley, Physica A 316, 87 (2002).

    Article  ADS  MATH  Google Scholar 

  24. G. Oh, C. Eom, S. Havlin, W.-S. Jung, F. Wang, H. E. Stanley and S. Kim, Eur. Phys. J. B 85, 214 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GabJin Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, G. Multifractal analysis of implied volatility in index options. Journal of the Korean Physical Society 64, 1751–1757 (2014). https://doi.org/10.3938/jkps.64.1751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1751

PACS numbers

Keywords

Navigation