Skip to main content
Log in

Growth and characterization of a multi-dimensional ZnO hybrid structure on a glass substrate by using metal organic chemical vapor deposition

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A multi-dimensional zinc oxide (ZnO) hybrid structure was successfully grown on a glass substrate by using metal organic chemical vapor deposition (MOCVD). The ZnO hybrid structure was composed of nanorods grown continuously on the ZnO film without any catalysts. The growth mode could be changed from a two-dimensional (2D) film to one-dimensional (1D) nanorods by simply controlling the substrate’s temperature. The ZnO with a hybrid structure showed improved electrical and optical properties. The ZnO hybrid structure grown by using MOCVD has excellent potential for applications in opto-electronic devices and solar cells as anti-reflection coatings (ARCs), transparent conductive oxides (TCOs) and transparent thin-film transistors (TTFTs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. Özgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkç, J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  2. A. Ashrafi and C. Jagadish, J. Appl. Phys. 102, 071101 (2007).

    Article  ADS  Google Scholar 

  3. A. F. Kohan, G. Ceder and D. Morgan, Phys. Rev. B 61, 15019 (2000).

    Article  ADS  Google Scholar 

  4. S. B. Zhang, S.-H. Wei and A. Zunger, Phys. Rev. B 63, 075205 (2001).

    Article  ADS  Google Scholar 

  5. F. Oba, S. R. Nishitani, S. Isotani and H. Adachi, J. Appl. Phys. 90, 824 (2001).

    Article  ADS  Google Scholar 

  6. H. Sheng, S. Muthukumar, N. W. Emanetoglu and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).

    Article  ADS  Google Scholar 

  7. Z. L. Wang, J. Phys.-Condens. Mat. 16, R829 (2004).

    Article  ADS  Google Scholar 

  8. B. P. Zhang, K. Wakatsuki, N. T. Binh, N. Usami and Y. Segawa, Thin Solid Films 449, 12 (2004).

    Article  ADS  Google Scholar 

  9. H.-J. Lee, S.-K. Kim, C. R. Cho, S.-J. Kim and S.-Y. Jeong, J. Korean Phys. Soc. 46, 34 (2005).

    Google Scholar 

  10. S. B. Krupanidhi and M. Sayer, J. Appl. Phys. 56, 3308 (1984).

    Article  ADS  Google Scholar 

  11. T. E. Park, D. C. Kim, B. H. Kong and H. K. Cho, J. Korean Phys. Soc. 45, 697 (2004).

    Google Scholar 

  12. S. K. Ghandhi, R. J. Field and J. R. Shealy, Appl. Phys. Lett. 37, 449 (1980).

    Article  ADS  Google Scholar 

  13. H. W. Kim, N. H. Kim C. Lee, J.-H. Ryu and N. E. Lee, J. Korean Phys. Soc. 44, 14 (2004).

    Google Scholar 

  14. Z. F. Liu, F. K. Shan, J. Y. Sohn, B. C. Shin, Y. S. Yu, S. C. Kim and Y. X. Li, J. Korean Phys. Soc. 44, 1123 (2004).

    Google Scholar 

  15. K. W. Kolasinski, Curr. Opin. Solid St. M. 10, 182 (2006).

    Article  Google Scholar 

  16. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  17. C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen and R. H. Horng, Cryst. Growth Des. 9, 4555 (2009).

    Article  Google Scholar 

  18. S.-S. Park, J.-M. Lee, S.-J. Kim and S.-W. Kim, J. Korean Phys. Soc. 53, 183 (2008).

    Google Scholar 

  19. J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater. 14, 1216 (2002).

    Article  Google Scholar 

  20. M. R. Khanlary, V. Vahedi and A. Reyhani, Molecules 17, 5021 (2012).

    Article  Google Scholar 

  21. Z. Fan and J. G. Lu, J. Nanosci. Nanotechno. 5, 1561 (2005).

    Article  Google Scholar 

  22. B.-Y. Oh, J.-H. Kim, J.-W. Han, D.-S. Seo, H. S. Jang, H.-J. Choi, S.-H. Back, J. H. Kim, G.-S. Heo, T.-W. Kim and K.-Y. Kim, Curr. Appl. Phys. 12, 273 (2012).

    Article  ADS  Google Scholar 

  23. F. K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).

    Article  Google Scholar 

  24. J. B. Baxter and C. A. Schmuttenmaer, J. Phys. Chem. B 110, 25229 (2006).

    Article  Google Scholar 

  25. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu and J. A. Smart, Nat. Photonics 1, 176 (2007).

    ADS  Google Scholar 

  26. D. Bouhafs, A. Moussi, A. Chikouche and J. M. Riz, Sol. Energ. Mat. Sol. C. 52, 79 (1998).

    Article  Google Scholar 

  27. S. Yilmaz, E. Bacaksiz, I. Polat and Y. Atasoy, Curr. Appl. Phys. 12, 1326 (2012).

    Article  Google Scholar 

  28. P. Uthirakumar, J. H. Kang, B. D. Ryu, H. G. Kim, H. K. Kim and C.-H. Hong, Mater. Sci. Eng. B-Adv. 166, 230 (2010).

    Article  Google Scholar 

  29. R. S. Mane, W.-J. Lee, C. D. Lokhande, B. W. Cho and S.-H. Han, Curr. Appl. Phys. 8, 549 (2008).

    Article  ADS  Google Scholar 

  30. L. Liao, J. C. Li, D. F. Wang, C. Liu, C. S. Liu, Q. Fu and L. X. Fan, Nanotechnology. 16, 985 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjin Byun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DS., Lee, D., Lee, JH. et al. Growth and characterization of a multi-dimensional ZnO hybrid structure on a glass substrate by using metal organic chemical vapor deposition. Journal of the Korean Physical Society 64, 1524–1528 (2014). https://doi.org/10.3938/jkps.64.1524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1524

PACS numbers

Keywords

Navigation